Jump to content
Wikipedia The Free Encyclopedia

BLOOM (language model)

From Wikipedia, the free encyclopedia
Multilingual open-access large language model
This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
This article relies excessively on references to primary sources . Please improve this article by adding secondary or tertiary sources.
Find sources: "BLOOM" language model – news · newspapers · books · scholar · JSTOR
(October 2022) (Learn how and when to remove this message)
This article contains promotional content . Please help improve it by removing promotional language and inappropriate external links, and by adding encyclopedic text written from a neutral point of view. (October 2022) (Learn how and when to remove this message)
(Learn how and when to remove this message)
BLOOM
Original author BigScience research workshop
Initial releaseJuly 12, 2022; 3 years ago (2022年07月12日)
Repository huggingface.co/bigscience/bloom
Written inPython
License BigScience Responsible AI License (RAIL) v1.0
Websitebigscience.huggingface.co

The BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) is an open-access large language model (LLM).[1] It was created by a volunteer-driven research effort to provide a transparently-created alternative to proprietary AI models.[2]

With 176 billion parameters, BLOOM is a transformer-based autoregressive model designed to generate text in 46 natural languages and 13 programming languages. The model, source code, and the data used to train it are all distributed under free licences, allowing for public research and use.[3] [4]

Development

[edit ]

BLOOM is the main outcome of the BigScience initiative, a one-year-long research workshop that took place from May 2021 to May 2022.[5] The project was led by HuggingFace and involved several hundred volunteer researchers and engineers from academia and the private sector. The model was trained between March and July 2022 on the Jean Zay public supercomputer in France, managed by GENCI and IDRIS (CNRS).[6]

BLOOM's training corpus, named ROOTS, combines data extracted from the then-latest version of the web-based OSCAR corpus (38% of ROOTS) and newly collected data extracted from a manually selected and documented list of language data sources. In total, the model was trained on approximately 366 billion (1.6TB) tokens.[7] [8]

[edit ]

References

[edit ]
  1. ^ "BigScience Large Open-science Open-access Multilingual Language Model" . Retrieved 2022年10月01日.
  2. ^ Heikkilä, Melissa (2022年07月12日). "BLOOM: Inside the radical new project to democratize AI". MIT Technology Review . Retrieved 2023年12月26日.
  3. ^ "The BigScience RAIL license" . Retrieved 2024年01月10日.
  4. ^ Le Scao T, Fan A, Akiki C, Pavlick E, Ilić S, Hesslow D, Castagné R, Luccioni A, Yvon F, Gallé M, Tow J, Rush AM, Biderman S, Webson A, Sasanka Ammanamanchi P, Wang T, Sagot B, Muennighoff N, Villanova del Moral A, Ruwase O, Bawden R, Bekman S, McMillan-Major A, Beltagy I, Nguyen H, Saulnier L, Tan S, Ortiz Suarez P, Sanh V, Laurençon H, Jernite Y, Launay J, Mitchell M, Raffel C, et al. (2022). "BLOOM: A 176B-Parameter Open-Access Multilingual Language Model". arXiv:2211.05100 [cs.CL].
  5. ^ "BigScience" . Retrieved 2024年01月10日.
  6. ^ "Release of largest trained open-science multilingual language model ever". French National Centre for Scientific Research . 2022年07月12日. Retrieved 2023年12月26日.
  7. ^ Laurençon H, Saulnier L, Wang T, Akiki C, Villanova del Moral A, Le Scao T, Von Werra L, Mou C, González Ponferrada C, Nguyen H, Frohberg J, Šaško M, Lhoest Q, McMillan-Major A, Dupont G, Biderman S, Rogers A, Ben allal L, De Toni F, Pistilli G, Nguyen O, Nikpoor S, Masoud M, Colombo P, de la Rosa J, Villegas P, Thrush T, Longpre S, Nagel S, Weber L, Muñoz M, Zhu J, Van Strien D, Alyafeai Z, Almubarak K, Vu MC, Gonzalez-Dios I, Soroa A, Lo K, Dey M, Ortiz Suarez P, Gokaslan A, Bose S, Adelani D, Phan L, Tran H, Yu I, Pai S, Chim J, Lepercq V, Ilic S, Mitchell M, Luccioni S, Jernite Y (2022). "The BigScience ROOTS Corpus: A 1.6TB Composite Multilingual Dataset". arXiv:2303.03915 [cs.CL].
  8. ^ Heikkilä, Melissa (2022年07月12日). "BLOOM: Inside the radical new project to democratize AI". MIT Technology Review . Retrieved 2023年12月26日.
Concepts
Applications
Implementations
Audio–visual
Text
Decisional
People
Architectures
Stub icon

This large language model-related article is a stub. You can help Wikipedia by expanding it.

AltStyle によって変換されたページ (->オリジナル) /