Jump to content
Wikipedia The Free Encyclopedia

Archimedean ordered vector space

From Wikipedia, the free encyclopedia
Vector space with a binary relation

In mathematics, specifically in order theory, a binary relation {\displaystyle ,円\leq ,円} {\displaystyle ,円\leq ,円} on a vector space X {\displaystyle X} {\displaystyle X} over the real or complex numbers is called Archimedean if for all x X , {\displaystyle x\in X,} {\displaystyle x\in X,} whenever there exists some y X {\displaystyle y\in X} {\displaystyle y\in X} such that n x y {\displaystyle nx\leq y} {\displaystyle nx\leq y} for all positive integers n , {\displaystyle n,} {\displaystyle n,} then necessarily x 0. {\displaystyle x\leq 0.} {\displaystyle x\leq 0.} An Archimedean (pre)ordered vector space is a (pre)ordered vector space whose order is Archimedean.[1] A preordered vector space X {\displaystyle X} {\displaystyle X} is called almost Archimedean if for all x X , {\displaystyle x\in X,} {\displaystyle x\in X,} whenever there exists a y X {\displaystyle y\in X} {\displaystyle y\in X} such that n 1 y x n 1 y {\displaystyle -n^{-1}y\leq x\leq n^{-1}y} {\displaystyle -n^{-1}y\leq x\leq n^{-1}y} for all positive integers n , {\displaystyle n,} {\displaystyle n,} then x = 0. {\displaystyle x=0.} {\displaystyle x=0.}[2]

Characterizations

[edit ]

A preordered vector space ( X , ) {\displaystyle (X,\leq )} {\displaystyle (X,\leq )} with an order unit u {\displaystyle u} {\displaystyle u} is Archimedean preordered if and only if n x u {\displaystyle nx\leq u} {\displaystyle nx\leq u} for all non-negative integers n {\displaystyle n} {\displaystyle n} implies x 0. {\displaystyle x\leq 0.} {\displaystyle x\leq 0.}[3]

Properties

[edit ]

Let X {\displaystyle X} {\displaystyle X} be an ordered vector space over the reals that is finite-dimensional. Then the order of X {\displaystyle X} {\displaystyle X} is Archimedean if and only if the positive cone of X {\displaystyle X} {\displaystyle X} is closed for the unique topology under which X {\displaystyle X} {\displaystyle X} is a Hausdorff TVS.[4]

Order unit norm

[edit ]

Suppose ( X , ) {\displaystyle (X,\leq )} {\displaystyle (X,\leq )} is an ordered vector space over the reals with an order unit u {\displaystyle u} {\displaystyle u} whose order is Archimedean and let U = [ u , u ] . {\displaystyle U=[-u,u].} {\displaystyle U=[-u,u].} Then the Minkowski functional p U {\displaystyle p_{U}} {\displaystyle p_{U}} of U {\displaystyle U} {\displaystyle U} (defined by p U ( x ) := inf { r > 0 : x r [ u , u ] } {\displaystyle p_{U}(x):=\inf \left\{r>0:x\in r[-u,u]\right\}} {\displaystyle p_{U}(x):=\inf \left\{r>0:x\in r[-u,u]\right\}}) is a norm called the order unit norm. It satisfies p U ( u ) = 1 {\displaystyle p_{U}(u)=1} {\displaystyle p_{U}(u)=1} and the closed unit ball determined by p U {\displaystyle p_{U}} {\displaystyle p_{U}} is equal to [ u , u ] {\displaystyle [-u,u]} {\displaystyle [-u,u]} (that is, [ u , u ] = { x X : p U ( x ) 1 } . {\displaystyle [-u,u]=\{x\in X:p_{U}(x)\leq 1\}.} {\displaystyle [-u,u]=\{x\in X:p_{U}(x)\leq 1\}.}[3]

Examples

[edit ]

The space l ( S , R ) {\displaystyle l_{\infty }(S,\mathbb {R} )} {\displaystyle l_{\infty }(S,\mathbb {R} )} of bounded real-valued maps on a set S {\displaystyle S} {\displaystyle S} with the pointwise order is Archimedean ordered with an order unit u := 1 {\displaystyle u:=1} {\displaystyle u:=1} (that is, the function that is identically 1 {\displaystyle 1} {\displaystyle 1} on S {\displaystyle S} {\displaystyle S}). The order unit norm on l ( S , R ) {\displaystyle l_{\infty }(S,\mathbb {R} )} {\displaystyle l_{\infty }(S,\mathbb {R} )} is identical to the usual sup norm: f := sup | f ( S ) | . {\displaystyle \|f\|:=\sup _{}|f(S)|.} {\displaystyle \|f\|:=\sup _{}|f(S)|.}[3]

Examples

[edit ]

Every order complete vector lattice is Archimedean ordered.[5] A finite-dimensional vector lattice of dimension n {\displaystyle n} {\displaystyle n} is Archimedean ordered if and only if it is isomorphic to R n {\displaystyle \mathbb {R} ^{n}} {\displaystyle \mathbb {R} ^{n}} with its canonical order.[5] However, a totally ordered vector order of dimension > 1 {\displaystyle ,円>1} {\displaystyle ,円>1} can not be Archimedean ordered.[5] There exist ordered vector spaces that are almost Archimedean but not Archimedean.

The Euclidean space R 2 {\displaystyle \mathbb {R} ^{2}} {\displaystyle \mathbb {R} ^{2}} over the reals with the lexicographic order is not Archimedean ordered since r ( 0 , 1 ) ( 1 , 1 ) {\displaystyle r(0,1)\leq (1,1)} {\displaystyle r(0,1)\leq (1,1)} for every r > 0 {\displaystyle r>0} {\displaystyle r>0} but ( 0 , 1 ) ( 0 , 0 ) . {\displaystyle (0,1)\neq (0,0).} {\displaystyle (0,1)\neq (0,0).}[3]

See also

[edit ]

References

[edit ]
  1. ^ Schaefer & Wolff 1999, pp. 204–214.
  2. ^ Schaefer & Wolff 1999, p. 254.
  3. ^ a b c d Narici & Beckenstein 2011, pp. 139–153.
  4. ^ Schaefer & Wolff 1999, pp. 222–225.
  5. ^ a b c Schaefer & Wolff 1999, pp. 250–257.

Bibliography

[edit ]

AltStyle によって変換されたページ (->オリジナル) /