Advanced z-transform
Appearance
From Wikipedia, the free encyclopedia
In mathematics and signal processing, the advanced z-transform is an extension of the z-transform, to incorporate ideal delays that are not multiples of the sampling time. The advanced z-transform is widely applied, for example, to accurately model processing delays in digital control. It is also known as the modified z-transform.
It takes the form
- {\displaystyle F(z,m)=\sum _{k=0}^{\infty }f(kT+m)z^{-k}}
where
- T is the sampling period
- m (the "delay parameter") is a fraction of the sampling period {\displaystyle [0,T].}
Properties
[edit ]If the delay parameter, m, is considered fixed then all the properties of the z-transform hold for the advanced z-transform.
Linearity
[edit ]- {\displaystyle {\mathcal {Z}}\left\{\sum _{k=1}^{n}c_{k}f_{k}(t)\right\}=\sum _{k=1}^{n}c_{k}F_{k}(z,m).}
Time shift
[edit ]- {\displaystyle {\mathcal {Z}}\left\{u(t-nT)f(t-nT)\right\}=z^{-n}F(z,m).}
Damping
[edit ]- {\displaystyle {\mathcal {Z}}\left\{f(t)e^{-a,円t}\right\}=e^{-a,円m}F(e^{a,円T}z,m).}
Time multiplication
[edit ]- {\displaystyle {\mathcal {Z}}\left\{t^{y}f(t)\right\}=\left(-Tz{\frac {d}{dz}}+m\right)^{y}F(z,m).}
Final value theorem
[edit ]- {\displaystyle \lim _{k\to \infty }f(kT+m)=\lim _{z\to 1}(1-z^{-1})F(z,m).}
Example
[edit ]Consider the following example where {\displaystyle f(t)=\cos(\omega t)}:
- {\displaystyle {\begin{aligned}F(z,m)&={\mathcal {Z}}\left\{\cos \left(\omega \left(kT+m\right)\right)\right\}\\&={\mathcal {Z}}\left\{\cos(\omega kT)\cos(\omega m)-\sin(\omega kT)\sin(\omega m)\right\}\\&=\cos(\omega m){\mathcal {Z}}\left\{\cos(\omega kT)\right\}-\sin(\omega m){\mathcal {Z}}\left\{\sin(\omega kT)\right\}\\&=\cos(\omega m){\frac {z\left(z-\cos(\omega T)\right)}{z^{2}-2z\cos(\omega T)+1}}-\sin(\omega m){\frac {z\sin(\omega T)}{z^{2}-2z\cos(\omega T)+1}}\\&={\frac {z^{2}\cos(\omega m)-z\cos(\omega (T-m))}{z^{2}-2z\cos(\omega T)+1}}.\end{aligned}}}
If {\displaystyle m=0} then {\displaystyle F(z,m)} reduces to the transform
- {\displaystyle F(z,0)={\frac {z^{2}-z\cos(\omega T)}{z^{2}-2z\cos(\omega T)+1}},}
which is clearly just the z-transform of {\displaystyle f(t)}.
References
[edit ]- Jury, Eliahu Ibraham (1973). Theory and Application of the z-Transform Method. Krieger. ISBN 0-88275-122-0. OCLC 836240.