Jump to content
Wikipedia The Free Encyclopedia

AI datacenter

From Wikipedia, the free encyclopedia
An editor has nominated this article for deletion.
You are welcome to participate in the deletion discussion , which will decide whether to keep it.
Feel free to improve the article, but do not remove this notice before the discussion is closed. For more information, see the guide to deletion.
Find sources: "AI datacenter" – news · newspapers · books · scholar · JSTOR %5B%5BWikipedia%3AArticles+for+deletion%2FAI+datacenter%5D%5DAFD
This article has multiple issues. Please help improve it or discuss these issues on the talk page . (Learn how and when to remove these messages)
This article may be confusing or unclear to readers. Please help clarify the article. There might be a discussion about this on the talk page. (December 2025) (Learn how and when to remove this message)
This article may lack focus or may be about more than one topic . Please help improve this article, possibly by splitting the article or organising a disambiguation page. There might be further discussion about this on the talk page. (December 2025)
The topic of this article may not meet Wikipedia's general notability guideline . Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.
Find sources: "AI datacenter" – news · newspapers · books · scholar · JSTOR
(December 2025) (Learn how and when to remove this message)
This article is an orphan, as no other articles introduce links to this page from related articles . (December 2025)
(Learn how and when to remove this message)

An AI datacenter (or artificial intelligence datacenter) is a specialized data center facility designed explicitly to support the high-performance computing (HPC) workloads required for the training and inference of artificial intelligence models.[1] Unlike traditional datacenters that host a variety of general-purpose computing tasks (like web services and databases), AI datacenters are optimized for the unique computational demands of machine learning, particularly deep learning.[2] [3] These facilities are characterized by extreme power density per rack (often exceeding 50–100 kW)[4] , advanced liquid cooling systems, and low-latency, high-bandwidth networking fabrics to facilitate parallel processing. [5] [6] [7]

The rise of generative AI since 2022 has triggered a global boom in the construction of AI datacenters, making them a critical and strategically important piece of national infrastructure.[8] Companies like Microsoft, Google, Meta, and Amazon are investing tens of billions of dollars to build facilities containing over 100,000 AI accelerators each.[9] [10] [11] This massive build out is causing a resurgence in nuclear power plants.[12] In 2025 Google spent 95ドル billion on capex, with much of that for AI datacenters.[13] [14] In 2025 U.S. tech companies spent 370ドル billion on capex with much of that spending for AI datacenters.[15] OpenAI wants to create a process for new datacenter expansion every week.[16] [17]

By 2026, AI data centers are projected to consume over 90 TWh of electricity annually.[18] In the U.S. energy use is growing by 33% per year attributed to AI datacenter growth.[19] A startup company was created to harness nuclear energy for the AI datacenter boom.[20] [21] The largest AI datacenter in 2025 cost 7ドル billion , and uses 300 MW of power—as much as 250,000 households.[22] Cornell University study estimates that the AI datacenter build out between 2024 and 2025 will contribute between 24 and 44 metric tons of addition CO2.[23]

The doubling of RAM and NAND prices has been attributed to the AI datacenter boom.[24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34]

The Trump administration is promoting the build out of AI datacenters.[35] U.S. president Trump hints at deregulation to promote AI datacenters.[36] [37] There is local opposition.[38] [39]

History

[edit ]

Early AI workloads in the 2010s were often run on general‐purpose high‐performance computing (HPC) clusters or small GPU servers in conventional data centers.[40] As deep learning models and datasets grew, cloud providers began to build dedicated infrastructures for AI training, including GPU clusters exposed through services such as Google Cloud TPU[41] , Amazon EC2 P-series instances[42] , and Microsoft Azure’s ND‐series virtual machines[43] .

Around 2022–2024, the rapid adoption of large language models (LLMs) and generative AI led to a surge in demand for specialized AI datacenters with thousands or tens of thousands of accelerators connected through high‐speed fabrics.[44] Several technology companies announced multibillion‐dollar investments in new or expanded AI‐focused campuses, often near abundant power supply or renewable energy sources.[45] [46] [47]

Architecture

[edit ]

AI datacenters are designed around clusters of accelerators optimized for parallel numerical computation. A typical facility includes: Compute: Large numbers of GPUs, TPUs, or other AI accelerators are deployed in high‐density racks. These devices are often grouped into "pods" or "nodes" that share local networking and storage and can be scaled out to thousands of accelerators for distributed training.

Networking: AI training jobs require high‐bandwidth, low‐latency communication to exchange gradients and parameters across devices. To support this, AI datacenters commonly use technologies such as InfiniBand, RDMA over Converged Ethernet, or proprietary interconnects. Storage and data pipelines: Training large models requires feeding vast datasets at high throughput. Control and orchestration: Software stacks manage job scheduling, resource allocation, and failure handling. Common AI frameworks include PyTorch and TensorFlow.

Technical architecture

[edit ]
  • Compute Density: Traditional server racks typically consume 5–15 kW of power.[48] AI racks, utilizing hardware like Nvidia H100s or Google TPUs, consume 40 kW to over 100 kW per rack.[49]
  • Cooling Systems: Due to the heat generated by high-density chips, AI data centers often abandon traditional air cooling (CRAC units) in favor of liquid cooling technologies, such as direct-to-chip cooling or immersion cooling.[50]
  • Networking: AI training requires thousands of chips to communicate simultaneously. This necessitates specialized non-blocking network architectures rather than standard Ethernet used in web servers.[51]

OpenAI

[edit ]

OpenAI's datacenter project is called Stargate.[52] The partnership includes Softbank, MGX and Oracle. In September 2025, it was announced the building of 5 new AI datacenters.[53] The new sites are in Texas, New Mexico, Wisconsin, and Ohio. Capacity is estimated to be 6.5 gigawatts and 400ドル billion investment over 3 years. OpenAI's revenue for 2025 was estimated to be less than 12ドル billion.[54]

The impact of these new AI datacenters is sparking concern.[55]

See also

[edit ]

References

[edit ]
  1. ^ elongated_musk (2025年02月18日). "How to build an AI Datacentre — Part 1 (Cooling and Power)". Medium. Archived from the original on 2025年02月24日. Retrieved 2025年12月09日.
  2. ^ Lee, Danny H. (2025年05月15日). "AI vs Traditional: Data Centers". Medium. Retrieved 2025年12月09日.
  3. ^ Cloud, Cyfuture. "what is ai data center". cyfuture.cloud. Retrieved 2025年12月09日.
  4. ^ "1,000 homes of power in a filing cabinet - rising power density disrupts AI infrastructure". www.goldmansachs.com. Archived from the original on 2025年09月15日. Retrieved 2025年12月09日.
  5. ^ Tithi, Jesmin Jahan; Wu, Hanjiang; Abuhatzera, Avishaii; Petrini, Fabrizio (2025年09月05日), Scaling Intelligence: Designing Data Centers for Next-Gen Language Models, arXiv:2506.15006 , retrieved 2025年12月10日
  6. ^ Garcia, Heidi. "Optimize AI Fabric Design for Efficient LLM Model Training". www.keysight.com. Retrieved 2025年12月10日.
  7. ^ "AI data center". F5, Inc. Retrieved 2025年12月09日.
  8. ^ "US data center build hits record as AI demand surges, Bank of America Institute says". Reuters.
  9. ^ "From OpenAI to Google, firms channel billions into AI infrastructure as demand booms". Reuters.
  10. ^ Carvão, Paulo. "Why OpenAI's AI Data Center Buildout Faces a 2026 Reality Check". Forbes.
  11. ^ https://www.fastcompany.com/91450218/ai-data-center-boom-unexpected-winner
  12. ^ Goudarzi, Sara (2025年12月05日). "When it all comes crashing down: The aftermath of the AI boom". Bulletin of the Atomic Scientists. Retrieved 2025年12月09日.
  13. ^ "Google boosts AI spending again as cloud unit soars | CIO Dive". www.ciodive.com. Retrieved 2025年12月09日.
  14. ^ Cooper, Ian (2025年12月08日). "AI Data Centers are Booming and These 3 Stocks Are Cashing In". 24/7 Wall St. Retrieved 2025年12月09日.
  15. ^ "The AI Data Center Boom Is Warping the US Economy | Medial". medial.app. Retrieved 2025年12月09日.
  16. ^ "Abundant Intelligence". Sam Altman. Retrieved 2025年12月09日.
  17. ^ "Will OpenAI Really Build 60 Football Fields Worth of AI Infrastructure Per Week?". PCMAG. 2025年09月23日. Retrieved 2025年12月09日.
  18. ^ "How AI Is Forcing a Rethink of Data Center Power". DataCenterKnowledge. Retrieved 2025年12月09日.
  19. ^ "AI Data Center Building Spree Hits 40ドル Billion in a Single Month". USFunds. Retrieved 2025年12月09日.
  20. ^ "Wall Street really likes Rick Perry's nuclear-powered data center company". Texas Standard. Retrieved 2025年12月09日.
  21. ^ "Gigawatt Scale Power for Next-Gen AI | Fermi America". 2025年06月24日. Retrieved 2025年12月09日.
  22. ^ "Trends in AI Supercomputers". arxiv.org. Retrieved 2025年12月09日.
  23. ^ Xiao, Tianqi; Nerini, Francesco Fuso; Matthews, H. Damon; Tavoni, Massimo; You, Fengqi (2025年11月10日). "Environmental impact and net-zero pathways for sustainable artificial intelligence servers in the USA". Nature Sustainability: 1–13. doi:10.1038/s41893-025-01681-y. ISSN 2398-9629.
  24. ^ Anton Shilov (2025年12月01日). "The RAM pricing crisis has only just started, Team Group GM warns — says problem will get worse in 2026 as DRAM and NAND prices double in one month". Tom's Hardware. Retrieved 2025年12月09日.
  25. ^ Butler, Sydney (2025年11月10日). "RAM prices have doubled, here's my plan to survive the 'RAM-pocalypse'". How-To Geek. Retrieved 2025年12月09日.
  26. ^ "Why is RAM so expensive right now?". NZXT. Retrieved 2025年12月09日.
  27. ^ www.bacloud.com https://www.bacloud.com/assets/error-pages/403.html . Retrieved 2025年12月09日. {{cite web}}: Missing or empty |title= (help)
  28. ^ "SSD & RAM Price Surge Guide: Why Costs Are Rising in 2025". ACEMAGIC. Retrieved 2025年12月09日.
  29. ^ Gamers Nexus (2025年11月16日). RAM: WTF? . Retrieved 2025年12月09日 – via YouTube.
  30. ^ Stephen Warwick (2025年11月04日). "Bewildered enthusiasts decry memory price increases of 100% or more — the AI RAM squeeze is finally starting to hit PC builders where it hurts". Tom's Hardware. Retrieved 2025年12月09日.
  31. ^ "'This Is Insanity': DDR RAM Prices Soar Due to AI Demand". PCMAG. 2025年10月23日. Retrieved 2025年12月09日.
  32. ^ "What's going on with RAM?". Windows Central. 2025年12月09日. Retrieved 2025年12月09日.
  33. ^ Roth, Emma (2025年12月09日). "RAM price hikes: the latest on the global memory shortage". The Verge. Retrieved 2025年12月09日.
  34. ^ Jason England (2025年12月04日). "RAM prices are exploding — here's why and everything you need to know about surviving RAMageddon". Tom's Guide. Retrieved 2025年12月09日.
  35. ^ "Trump's push for more AI data centers faces backlash from his own voters". Reuters.
  36. ^ "Donald J. Trump (@realDonaldTrump)". Truth Social. Retrieved 2025年12月09日.
  37. ^ Metzger, Bryan. "Trump says he'll sign an executive order restricting states' ability to regulate AI". Business Insider. Retrieved 2025年12月09日.
  38. ^ "Trump's push for more AI data centers faces backlash from his own voters". Reuters.
  39. ^ Editor (2025年08月16日). "Local Communities Rise Up Against Massive AI Data Centers". Corporate Crime Reporter. Retrieved 2025年12月09日. {{cite web}}: |last= has generic name (help)
  40. ^ Coates, Adam; Huval, Brody; Wang, Tao; Wu, David; Catanzaro, Bryan; Andrew, Ng (2013年05月26日). "Deep learning with COTS HPC systems". Proceedings of the 30th International Conference on Machine Learning. PMLR: 1337–1345.
  41. ^ Jouppi, Norman P.; Young, Cliff; Patil, Nishant; Patterson, David; Agrawal, Gaurav; Bajwa, Raminder; Bates, Sarah; Bhatia, Suresh; Boden, Nan (2017年04月16日), In-Datacenter Performance Analysis of a Tensor Processing Unit, arXiv:1704.04760 , retrieved 2025年12月09日
  42. ^ "Introducing Amazon EC2 P2 Instances, the largest GPU-Powered virtual machine in the cloud - AWS". Amazon Web Services, Inc. Retrieved 2025年12月09日.
  43. ^ "Azure Deep Learning and ND, NC series with NVidia | Microsoft Community Hub". TECHCOMMUNITY.MICROSOFT.COM. Archived from the original on 2025年04月17日. Retrieved 2025年12月09日.
  44. ^ "NVIDIA Hopper GPUs Expand Reach as Demand for AI Grows". investor.nvidia.com. Retrieved 2025年12月10日.
  45. ^ "Meta's new AI supercomputer: 16,000 x GPUs, insane 175PB bulk storage". TweakTown. 2022年01月26日. Retrieved 2025年12月10日.
  46. ^ Freund, Karl. "Meta Builds World's Largest AI Supercomputer With NVIDIA For AI Research And Production". Forbes. Retrieved 2025年12月10日.
  47. ^ "Eagle (Microsoft)". Glenn's Digital Garden. 2024年12月05日. Retrieved 2025年12月10日.
  48. ^ "How Much Electricity Does A Data Center Use? 2025 Guide". 2025年10月02日. Retrieved 2025年12月09日.
  49. ^ "1,000 homes of power in a filing cabinet - rising power density disrupts AI infrastructure".
  50. ^ "The Evolution of Data Centers: From Traditional to AI-Powered". hexatronicdatacenter.com. Retrieved 2025年12月09日.
  51. ^ Wang, Bill (2025年10月04日). "Why AI Training Needs Special Networks". Medium. Retrieved 2025年12月09日.
  52. ^ "Announcing The Stargate Project". openai.com. Retrieved 2025年12月10日.
  53. ^ "OpenAI, Oracle, and SoftBank expand Stargate with five new AI data center sites". openai.com. 2025年12月09日. Retrieved 2025年12月10日.
  54. ^ "OpenAI's Data Center Expansion: A Strategic Shift Fueling AI Dominance". Ainvest. Retrieved 2025年12月10日.
  55. ^ published, Jowi Morales (2025年11月13日). "OpenAI's colossal AI data center targets would consume as much electricity as entire nation of India — 250GW target would require 30 million GPUs annually to ensure continuous operation, emit twice as much carbon dioxide as ExxonMobil". Tom's Hardware. Retrieved 2025年12月10日.
[edit ]

AltStyle によって変換されたページ (->オリジナル) /