Jump to content
Wikipedia The Free Encyclopedia

Generalised logistic function

From Wikipedia, the free encyclopedia
Mathematical function
A=M=0, K=C=1, B=3, ν=0.5, Q=0.5
Effect of varying parameter A. All other parameters are 1.
Effect of varying parameter B. A = 0, all other parameters are 1.
Effect of varying parameter C. A = 0, all other parameters are 1.
Effect of varying parameter K. A = 0, all other parameters are 1.
Effect of varying parameter Q. A = 0, all other parameters are 1.
Effect of varying parameter ν {\displaystyle \nu } {\displaystyle \nu }. A = 0, all other parameters are 1.

The generalized logistic function or curve is an extension of the logistic or sigmoid functions. Originally developed for growth modelling, it allows for more flexible S-shaped curves. The function is sometimes named Richards's curve after F. J. Richards, who proposed the general form for the family of models in 1959.

Definition

[edit ]

Richards's curve has the following form:

Y ( t ) = A + K A ( C + Q e B t ) 1 / ν {\displaystyle Y(t)=A+{K-A \over (C+Qe^{-Bt})^{1/\nu }}} {\displaystyle Y(t)=A+{K-A \over (C+Qe^{-Bt})^{1/\nu }}}

where Y {\displaystyle Y} {\displaystyle Y} = weight, height, size etc., and t {\displaystyle t} {\displaystyle t} = time. It has six parameters:

  • A {\displaystyle A} {\displaystyle A}: the left horizontal asymptote;
  • K {\displaystyle K} {\displaystyle K}: the right horizontal asymptote when C = 1 {\displaystyle C=1} {\displaystyle C=1}. If A = 0 {\displaystyle A=0} {\displaystyle A=0} and C = 1 {\displaystyle C=1} {\displaystyle C=1} then K {\displaystyle K} {\displaystyle K} is called the carrying capacity;
  • B {\displaystyle B} {\displaystyle B}: the growth rate;
  • ν > 0 {\displaystyle \nu >0} {\displaystyle \nu >0} : affects near which asymptote maximum growth occurs.
  • Q {\displaystyle Q} {\displaystyle Q}: is related to the value Y ( 0 ) {\displaystyle Y(0)} {\displaystyle Y(0)}
  • C {\displaystyle C} {\displaystyle C}: typically takes a value of 1. Otherwise, the upper asymptote is A + K A C 1 / ν {\displaystyle A+{K-A \over C^{,1円/\nu }}} {\displaystyle A+{K-A \over C^{,1円/\nu }}}

The equation can also be written:

Y ( t ) = A + K A ( C + e B ( t M ) ) 1 / ν {\displaystyle Y(t)=A+{K-A \over (C+e^{-B(t-M)})^{1/\nu }}} {\displaystyle Y(t)=A+{K-A \over (C+e^{-B(t-M)})^{1/\nu }}}

where M {\displaystyle M} {\displaystyle M} can be thought of as a starting time, at which Y ( M ) = A + K A ( C + 1 ) 1 / ν {\displaystyle Y(M)=A+{K-A \over (C+1)^{1/\nu }}} {\displaystyle Y(M)=A+{K-A \over (C+1)^{1/\nu }}}. Including both Q {\displaystyle Q} {\displaystyle Q} and M {\displaystyle M} {\displaystyle M} can be convenient:

Y ( t ) = A + K A ( C + Q e B ( t M ) ) 1 / ν {\displaystyle Y(t)=A+{K-A \over (C+Qe^{-B(t-M)})^{1/\nu }}} {\displaystyle Y(t)=A+{K-A \over (C+Qe^{-B(t-M)})^{1/\nu }}}

this representation simplifies the setting of both a starting time and the value of Y {\displaystyle Y} {\displaystyle Y} at that time.

The logistic function, with maximum growth rate at time M {\displaystyle M} {\displaystyle M}, is the case where Q = ν = 1 {\displaystyle Q=\nu =1} {\displaystyle Q=\nu =1}.

Generalised logistic differential equation

[edit ]

A particular case of the generalised logistic function is:

Y ( t ) = K ( 1 + Q e α ν ( t t 0 ) ) 1 / ν {\displaystyle Y(t)={K \over (1+Qe^{-\alpha \nu (t-t_{0})})^{1/\nu }}} {\displaystyle Y(t)={K \over (1+Qe^{-\alpha \nu (t-t_{0})})^{1/\nu }}}

which is the solution of the Richards's differential equation (RDE):

Y ( t ) = α ( 1 ( Y K ) ν ) Y {\displaystyle Y^{\prime }(t)=\alpha \left(1-\left({\frac {Y}{K}}\right)^{\nu }\right)Y} {\displaystyle Y^{\prime }(t)=\alpha \left(1-\left({\frac {Y}{K}}\right)^{\nu }\right)Y}

with initial condition

Y ( t 0 ) = Y 0 {\displaystyle Y(t_{0})=Y_{0}} {\displaystyle Y(t_{0})=Y_{0}}

where

Q = 1 + ( K Y 0 ) ν {\displaystyle Q=-1+\left({\frac {K}{Y_{0}}}\right)^{\nu }} {\displaystyle Q=-1+\left({\frac {K}{Y_{0}}}\right)^{\nu }}

provided that ν > 0 {\displaystyle \nu >0} {\displaystyle \nu >0} and α > 0 {\displaystyle \alpha >0} {\displaystyle \alpha >0}

The classical logistic differential equation is a particular case of the above equation, with ν = 1 {\displaystyle \nu =1} {\displaystyle \nu =1}, whereas the Gompertz curve can be recovered in the limit ν 0 + {\displaystyle \nu \rightarrow 0^{+}} {\displaystyle \nu \rightarrow 0^{+}} provided that:

α = O ( 1 ν ) {\displaystyle \alpha =O\left({\frac {1}{\nu }}\right)} {\displaystyle \alpha =O\left({\frac {1}{\nu }}\right)}

In fact, for small ν {\displaystyle \nu } {\displaystyle \nu } it is

Y ( t ) = Y r 1 exp ( ν ln ( Y K ) ) ν r Y ln ( Y K ) {\displaystyle Y^{\prime }(t)=Yr{\frac {1-\exp \left(\nu \ln \left({\frac {Y}{K}}\right)\right)}{\nu }}\approx rY\ln \left({\frac {Y}{K}}\right)} {\displaystyle Y^{\prime }(t)=Yr{\frac {1-\exp \left(\nu \ln \left({\frac {Y}{K}}\right)\right)}{\nu }}\approx rY\ln \left({\frac {Y}{K}}\right)}

The RDE models many growth phenomena, arising in fields such as oncology and epidemiology.

Gradient of generalized logistic function

[edit ]

When estimating parameters from data, it is often necessary to compute the partial derivatives of the logistic function with respect to parameters at a given data point t {\displaystyle t} {\displaystyle t} (see[1] ). For the case where C = 1 {\displaystyle C=1} {\displaystyle C=1},

Y A = 1 ( 1 + Q e B ( t M ) ) 1 / ν Y K = ( 1 + Q e B ( t M ) ) 1 / ν Y B = ( K A ) ( t M ) Q e B ( t M ) ν ( 1 + Q e B ( t M ) ) 1 ν + 1 Y ν = ( K A ) ln ( 1 + Q e B ( t M ) ) ν 2 ( 1 + Q e B ( t M ) ) 1 ν Y Q = ( K A ) e B ( t M ) ν ( 1 + Q e B ( t M ) ) 1 ν + 1 Y M = ( K A ) Q B e B ( t M ) ν ( 1 + Q e B ( t M ) ) 1 ν + 1 {\displaystyle {\begin{aligned}\\{\frac {\partial Y}{\partial A}}&=1-(1+Qe^{-B(t-M)})^{-1/\nu }\\\\{\frac {\partial Y}{\partial K}}&=(1+Qe^{-B(t-M)})^{-1/\nu }\\\\{\frac {\partial Y}{\partial B}}&={\frac {(K-A)(t-M)Qe^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\\{\frac {\partial Y}{\partial \nu }}&={\frac {(K-A)\ln(1+Qe^{-B(t-M)})}{\nu ^{2}(1+Qe^{-B(t-M)})^{\frac {1}{\nu }}}}\\\\{\frac {\partial Y}{\partial Q}}&=-{\frac {(K-A)e^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\\{\frac {\partial Y}{\partial M}}&=-{\frac {(K-A)QBe^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\end{aligned}}} {\displaystyle {\begin{aligned}\\{\frac {\partial Y}{\partial A}}&=1-(1+Qe^{-B(t-M)})^{-1/\nu }\\\\{\frac {\partial Y}{\partial K}}&=(1+Qe^{-B(t-M)})^{-1/\nu }\\\\{\frac {\partial Y}{\partial B}}&={\frac {(K-A)(t-M)Qe^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\\{\frac {\partial Y}{\partial \nu }}&={\frac {(K-A)\ln(1+Qe^{-B(t-M)})}{\nu ^{2}(1+Qe^{-B(t-M)})^{\frac {1}{\nu }}}}\\\\{\frac {\partial Y}{\partial Q}}&=-{\frac {(K-A)e^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\\{\frac {\partial Y}{\partial M}}&=-{\frac {(K-A)QBe^{-B(t-M)}}{\nu (1+Qe^{-B(t-M)})^{{\frac {1}{\nu }}+1}}}\\\end{aligned}}}


Special cases

[edit ]

The following functions are specific cases of Richards's curves:

Footnotes

[edit ]
  1. ^ Fekedulegn, Desta; Mairitin P. Mac Siurtain; Jim J. Colbert (1999). "Parameter Estimation of Nonlinear Growth Models in Forestry" (PDF). Silva Fennica. 33 (4): 327–336. doi:10.14214/sf.653. Archived from the original (PDF) on 2011年09月29日. Retrieved 2011年05月31日.

References

[edit ]

AltStyle によって変換されたページ (->オリジナル) /