Jump to content
Wikipedia The Free Encyclopedia

Chern–Simons form

From Wikipedia, the free encyclopedia
Secondary characteristic classes of 3-manifolds

In mathematics, the Chern–Simons forms are certain secondary characteristic classes.[1] The theory is named for Shiing-Shen Chern and James Harris Simons, co-authors of a 1974 paper entitled "Characteristic Forms and Geometric Invariants," from which the theory arose.[2] [3]

Definition

[edit ]

Given a manifold and a Lie algebra valued 1-form A {\displaystyle \mathbf {A} } {\displaystyle \mathbf {A} } over it, we can define a family of p-forms:[4]

In one dimension, the Chern–Simons 1-form is given by

Tr [ A ] . {\displaystyle \operatorname {Tr} [\mathbf {A} ].} {\displaystyle \operatorname {Tr} [\mathbf {A} ].}

In three dimensions, the Chern–Simons 3-form is given by

Tr [ F A 1 3 A A A ] = Tr [ d A A + 2 3 A A A ] . {\displaystyle \operatorname {Tr} \left[\mathbf {F} \wedge \mathbf {A} -{\frac {1}{3}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right]=\operatorname {Tr} \left[d\mathbf {A} \wedge \mathbf {A} +{\frac {2}{3}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right].} {\displaystyle \operatorname {Tr} \left[\mathbf {F} \wedge \mathbf {A} -{\frac {1}{3}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right]=\operatorname {Tr} \left[d\mathbf {A} \wedge \mathbf {A} +{\frac {2}{3}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right].}

In five dimensions, the Chern–Simons 5-form is given by

Tr [ F F A 1 2 F A A A + 1 10 A A A A A ] = Tr [ d A d A A + 3 2 d A A A A + 3 5 A A A A A ] {\displaystyle {\begin{aligned}&\operatorname {Tr} \left[\mathbf {F} \wedge \mathbf {F} \wedge \mathbf {A} -{\frac {1}{2}}\mathbf {F} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} +{\frac {1}{10}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right]\\[6pt]={}&\operatorname {Tr} \left[d\mathbf {A} \wedge d\mathbf {A} \wedge \mathbf {A} +{\frac {3}{2}}d\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} +{\frac {3}{5}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right]\end{aligned}}} {\displaystyle {\begin{aligned}&\operatorname {Tr} \left[\mathbf {F} \wedge \mathbf {F} \wedge \mathbf {A} -{\frac {1}{2}}\mathbf {F} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} +{\frac {1}{10}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right]\\[6pt]={}&\operatorname {Tr} \left[d\mathbf {A} \wedge d\mathbf {A} \wedge \mathbf {A} +{\frac {3}{2}}d\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} +{\frac {3}{5}}\mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \wedge \mathbf {A} \right]\end{aligned}}}

where the curvature F is defined as

F = d A + A A . {\displaystyle \mathbf {F} =d\mathbf {A} +\mathbf {A} \wedge \mathbf {A} .} {\displaystyle \mathbf {F} =d\mathbf {A} +\mathbf {A} \wedge \mathbf {A} .}

The general Chern–Simons form ω 2 k 1 {\displaystyle \omega _{2k-1}} {\displaystyle \omega _{2k-1}} is defined in such a way that

d ω 2 k 1 = Tr ( F k ) , {\displaystyle d\omega _{2k-1}=\operatorname {Tr} (F^{k}),} {\displaystyle d\omega _{2k-1}=\operatorname {Tr} (F^{k}),}

where the wedge product is used to define Fk. The right-hand side of this equation is proportional to the k-th Chern character of the connection A {\displaystyle \mathbf {A} } {\displaystyle \mathbf {A} }.

In general, the Chern–Simons p-form is defined for any odd p.[5]

Application to physics

[edit ]

In 1978, Albert Schwarz formulated Chern–Simons theory, early topological quantum field theory, using Chern-Simons forms.[6]

In the gauge theory, the integral of Chern-Simons form is a global geometric invariant, and is typically gauge invariant modulo addition of an integer.

See also

[edit ]

References

[edit ]
  1. ^ Freed, Daniel (April 2009) [January 15, 2009]. "Remarks on Chern–Simons theory". Bulletin of the American Mathematical Society . 46 (2): 221–254. Retrieved April 1, 2020.
  2. ^ Chern, S.-S.; Simons, J. (1974). "Characteristic forms and geometric invariants". Annals of Mathematics . Second Series. 99 (1): 48–69. doi:10.2307/1971013. JSTOR 1971013.
  3. ^ Chern, Shiing-Shen; Tian, G.; Li, Peter (1996). A Mathematician and His Mathematical Work: Selected Papers of S.S. Chern. World Scientific. ISBN 978-981-02-2385-4.
  4. ^ "Chern-Simons form in nLab". ncatlab.org. Retrieved May 1, 2020.
  5. ^ Moore, Greg (June 7, 2019). "Introduction To Chern-Simons Theories" (PDF). University of Texas. Retrieved June 7, 2019.
  6. ^ Schwartz, A. S. (1978). "The partition function of degenerate quadratic functional and Ray-Singer invariants". Letters in Mathematical Physics . 2 (3): 247–252. Bibcode:1978LMaPh...2..247S. doi:10.1007/BF00406412. S2CID 123231019.

Further reading

[edit ]
Background
Theory
String duality
Particles and fields
Branes
Conformal field theory
Gauge theory
Geometry
Supersymmetry
Holography
M-theory
String theorists

AltStyle によって変換されたページ (->オリジナル) /