Class TextEmbeddingModel (1.80.0)

TextEmbeddingModel(model_id: str, endpoint_name: typing.Optional[str] = None)

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=...) instead.

Methods

batch_predict

batch_predict(
 *,
 dataset: typing.Union[str, typing.List[str]],
 destination_uri_prefix: str,
 model_parameters: typing.Optional[typing.Dict] = None
) -> google.cloud.aiplatform.jobs.BatchPredictionJob

Starts a batch prediction job with the model.

Exceptions
Type Description
ValueError When source or destination URI is not supported.

count_tokens

count_tokens(
 prompts: typing.List[str],
) -> vertexai.preview.language_models.CountTokensResponse

Counts the tokens and billable characters for a given prompt.

Note: this does not make a prediction request to the model, it only counts the tokens in the request.

Parameter
Name Description
prompts List[str]

Required. A list of prompts to ask the model. For example: ["What should I do today?", "How's it going?"]

deploy_tuned_model

deploy_tuned_model(
 tuned_model_name: str,
 machine_type: typing.Optional[str] = None,
 accelerator: typing.Optional[str] = None,
 accelerator_count: typing.Optional[int] = None,
) -> vertexai.language_models._language_models._LanguageModel

Loads the specified tuned language model.

from_pretrained

from_pretrained(model_name: str) -> vertexai._model_garden._model_garden_models.T

Loads a _ModelGardenModel.

Exceptions
Type Description
ValueError If model_name is unknown.
ValueError If model does not support this class.

get_embeddings

get_embeddings(
 texts: typing.List[typing.Union[str, vertexai.language_models.TextEmbeddingInput]],
 *,
 auto_truncate: bool = True,
 output_dimensionality: typing.Optional[int] = None
) -> typing.List[vertexai.language_models.TextEmbedding]

Calculates embeddings for the given texts.

get_embeddings_async

get_embeddings_async(
 texts: typing.List[typing.Union[str, vertexai.language_models.TextEmbeddingInput]],
 *,
 auto_truncate: bool = True,
 output_dimensionality: typing.Optional[int] = None
) -> typing.List[vertexai.language_models.TextEmbedding]

Asynchronously calculates embeddings for the given texts.

get_tuned_model

get_tuned_model(*args, **kwargs)

Loads the specified tuned language model.

list_tuned_model_names

list_tuned_model_names() -> typing.Sequence[str]

Lists the names of tuned models.

tune_model

tune_model(
 *,
 training_data: typing.Optional[str] = None,
 corpus_data: typing.Optional[str] = None,
 queries_data: typing.Optional[str] = None,
 test_data: typing.Optional[str] = None,
 validation_data: typing.Optional[str] = None,
 batch_size: typing.Optional[int] = None,
 train_steps: typing.Optional[int] = None,
 tuned_model_location: typing.Optional[str] = None,
 model_display_name: typing.Optional[str] = None,
 task_type: typing.Optional[str] = None,
 machine_type: typing.Optional[str] = None,
 accelerator: typing.Optional[str] = None,
 accelerator_count: typing.Optional[int] = None,
 output_dimensionality: typing.Optional[int] = None,
 learning_rate_multiplier: typing.Optional[float] = None
) -> vertexai.language_models._language_models._TextEmbeddingModelTuningJob

Tunes a model based on training data.

This method launches and returns an asynchronous model tuning job. Usage:

tuning_job = model.tune_model(...)
... do some other work
tuned_model = tuning_job.deploy_tuned_model() # Blocks until tuning is complete
Exceptions
Type Description
ValueError If the provided parameter combinations or values are not supported.
RuntimeError If the model does not support tuning

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年10月30日 UTC.