Class CodeChatModel (1.62.0)

CodeChatModel(model_id: str, endpoint_name: typing.Optional[str] = None)

CodeChatModel represents a model that is capable of completing code.

.. rubric:: Examples

code_chat_model = CodeChatModel.from_pretrained("codechat-bison@001")

code_chat = code_chat_model.start_chat( context="I'm writing a large-scale enterprise application.", max_output_tokens=128, temperature=0.2, )

code_chat.send_message("Please help write a function to calculate the min of two numbers")

Methods

CodeChatModel

CodeChatModel(model_id: str, endpoint_name: typing.Optional[str] = None)

Creates a LanguageModel.

This constructor should not be called directly. Use LanguageModel.from_pretrained(model_name=...) instead.

Parameters
Name Description
model_id str

Identifier of a Vertex LLM. Example: "text-bison@001"

endpoint_name typing.Optional[str]

Vertex Endpoint resource name for the model

from_pretrained

from_pretrained(model_name: str) -> vertexai._model_garden._model_garden_models.T

Loads a _ModelGardenModel.

Parameter
Name Description
model_name str

Name of the model.

Exceptions
Type Description
ValueError If model_name is unknown.
ValueError If model does not support this class.

get_tuned_model

get_tuned_model(
 tuned_model_name: str,
) -> vertexai.language_models._language_models._LanguageModel

Loads the specified tuned language model.

list_tuned_model_names

list_tuned_model_names() -> typing.Sequence[str]

Lists the names of tuned models.

start_chat

start_chat(
 *,
 context: typing.Optional[str] = None,
 max_output_tokens: typing.Optional[int] = None,
 temperature: typing.Optional[float] = None,
 message_history: typing.Optional[
 typing.List[vertexai.language_models.ChatMessage]
 ] = None,
 stop_sequences: typing.Optional[typing.List[str]] = None
) -> vertexai.language_models.CodeChatSession

Starts a chat session with the code chat model.

tune_model

tune_model(
 training_data: typing.Union[str, pandas.core.frame.DataFrame],
 *,
 train_steps: typing.Optional[int] = None,
 learning_rate_multiplier: typing.Optional[float] = None,
 tuning_job_location: typing.Optional[str] = None,
 tuned_model_location: typing.Optional[str] = None,
 model_display_name: typing.Optional[str] = None,
 default_context: typing.Optional[str] = None,
 accelerator_type: typing.Optional[typing.Literal["TPU", "GPU"]] = None,
 tuning_evaluation_spec: typing.Optional[TuningEvaluationSpec] = None
) -> _LanguageModelTuningJob

Tunes a model based on training data.

This method launches and returns an asynchronous model tuning job. Usage:

tuning_job = model.tune_model(...)
... do some other work
tuned_model = tuning_job.get_tuned_model() # Blocks until tuning is complete
Parameter
Name Description
training_data typing.Union[str, pandas.core.frame.DataFrame]

A Pandas DataFrame or a URI pointing to data in JSON lines format. The dataset schema is model-specific. See https://cloud.google.com/vertex-ai/docs/generative-ai/models/tune-models#dataset_format

Exceptions
Type Description
ValueError If the "tuning_job_location" value is not supported
ValueError If the "tuned_model_location" value is not supported
RuntimeError If the model does not support tuning
AttributeError If any attribute in the "tuning_evaluation_spec" is not supported

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年10月30日 UTC.