Package Methods (0.3.0)

Summary of entries of Methods for langchain-google-spanner.

langchain_google_spanner.loader._load_doc_to_row

_load_doc_to_row(
 table_fields: typing.List[str],
 doc: langchain_core.documents.base.Document,
 content_column: str,
 metadata_json_column: str,
 parse_json: bool = True,
) -> tuple

Load document to row.

See more: langchain_google_spanner.loader._load_doc_to_row

langchain_google_spanner.chat_message_history.SpannerChatMessageHistory._verify_schema

_verify_schema() -> None

Verify table exists with required schema for SpannerChatMessageHistory class.

See more: langchain_google_spanner.chat_message_history.SpannerChatMessageHistory._verify_schema

langchain_google_spanner.chat_message_history.SpannerChatMessageHistory.add_message

add_message(message: langchain_core.messages.base.BaseMessage) -> None

Append the message to the record in Cloud Spanner.

See more: langchain_google_spanner.chat_message_history.SpannerChatMessageHistory.add_message

langchain_google_spanner.chat_message_history.SpannerChatMessageHistory.clear

clear() -> None

Clear session memory from Cloud Spanner.

See more: langchain_google_spanner.chat_message_history.SpannerChatMessageHistory.clear

langchain_google_spanner.chat_message_history.SpannerChatMessageHistory.create_chat_history_table

create_chat_history_table(
 instance_id: str,
 database_id: str,
 table_name: str,
 client: typing.Optional[google.cloud.spanner_v1.client.Client] = None,
) -> None

Create a chat history table in a Cloud Spanner database.

See more: langchain_google_spanner.chat_message_history.SpannerChatMessageHistory.create_chat_history_table

langchain_google_spanner.loader.SpannerDocumentSaver

SpannerDocumentSaver(
 instance_id: str,
 database_id: str,
 table_name: str,
 content_column: str = "page_content",
 metadata_columns: typing.List[str] = [],
 metadata_json_column: str = "langchain_metadata",
 primary_key: typing.Optional[str] = None,
 client: typing.Optional[google.cloud.spanner_v1.client.Client] = None,
)

Initialize Spanner document saver.

See more: langchain_google_spanner.loader.SpannerDocumentSaver

langchain_google_spanner.loader.SpannerDocumentSaver.add_documents

add_documents(documents: typing.List[langchain_core.documents.base.Document])

Add documents to the Spanner table.

See more: langchain_google_spanner.loader.SpannerDocumentSaver.add_documents

langchain_google_spanner.loader.SpannerDocumentSaver.create_table

create_table(
 client: google.cloud.spanner_v1.client.Client,
 instance_id: str,
 database_id: str,
 table_name: str,
 primary_key: str,
 metadata_json_column: str,
 content_column: str,
 metadata_columns: typing.List[langchain_google_spanner.loader.Column],
)

Create a new table in Spanner database.

See more: langchain_google_spanner.loader.SpannerDocumentSaver.create_table

langchain_google_spanner.loader.SpannerDocumentSaver.delete

delete(documents: typing.List[langchain_core.documents.base.Document])

Delete documents from the table.

See more: langchain_google_spanner.loader.SpannerDocumentSaver.delete

langchain_google_spanner.loader.SpannerDocumentSaver.init_document_table

init_document_table(
 instance_id: str,
 database_id: str,
 table_name: str,
 content_column: str = "page_content",
 metadata_columns: typing.List[langchain_google_spanner.loader.Column] = [],
 primary_key: str = "",
 store_metadata: bool = True,
 metadata_json_column: str = "langchain_metadata",
)

Create a new table to store docs with a custom schema.

See more: langchain_google_spanner.loader.SpannerDocumentSaver.init_document_table

langchain_google_spanner.loader.SpannerLoader

SpannerLoader(
 instance_id: str,
 database_id: str,
 query: str,
 content_columns: typing.List[str] = [],
 metadata_columns: typing.List[str] = [],
 format: str = "text",
 databoost: bool = False,
 metadata_json_column: str = "langchain_metadata",
 staleness: typing.Union[float, datetime.datetime] = 0.0,
 client: typing.Optional[google.cloud.spanner_v1.client.Client] = None,
)

Initialize Spanner document loader.

See more: langchain_google_spanner.loader.SpannerLoader

langchain_google_spanner.loader.SpannerLoader.lazy_load

lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]

A lazy loader for langchain documents from a Spanner database.

See more: langchain_google_spanner.loader.SpannerLoader.lazy_load

langchain_google_spanner.loader.SpannerLoader.load

load() -> typing.List[langchain_core.documents.base.Document]

Load langchain documents from a Spanner database.

See more: langchain_google_spanner.loader.SpannerLoader.load

langchain_google_spanner.vector_store.DialectSemantics.getDistanceFunction

getDistanceFunction(distance_strategy=DistanceStrategy.EUCLIDEIAN) -> str

Abstract method to get the distance function based on the provided distance strategy.

See more: langchain_google_spanner.vector_store.DialectSemantics.getDistanceFunction

langchain_google_spanner.vector_store.GoogleSqlSemnatics.getDistanceFunction

getDistanceFunction(distance_strategy=DistanceStrategy.EUCLIDEIAN) -> str

Abstract method to get the distance function based on the provided distance strategy.

See more: langchain_google_spanner.vector_store.GoogleSqlSemnatics.getDistanceFunction

langchain_google_spanner.vector_store.PGSqlSemnatics.getDistanceFunction

getDistanceFunction(distance_strategy=DistanceStrategy.EUCLIDEIAN) -> str

Abstract method to get the distance function based on the provided distance strategy.

See more: langchain_google_spanner.vector_store.PGSqlSemnatics.getDistanceFunction

langchain_google_spanner.vector_store.QueryParameters

QueryParameters(
 algorithm=NearestNeighborsAlgorithm.EXACT_NEAREST_NEIGHBOR,
 distance_strategy=DistanceStrategy.EUCLIDEIAN,
 read_timestamp: typing.Optional[datetime.datetime] = None,
 min_read_timestamp: typing.Optional[datetime.datetime] = None,
 max_staleness: typing.Optional[datetime.timedelta] = None,
 exact_staleness: typing.Optional[datetime.timedelta] = None,
)

Initialize query parameters.

See more: langchain_google_spanner.vector_store.QueryParameters

langchain_google_spanner.vector_store.SpannerVectorStore._generate_sql

_generate_sql(
 dialect,
 table_name,
 id_column,
 content_column,
 embedding_column,
 column_configs,
 primary_key,
 secondary_indexes: typing.Optional[
 typing.List[langchain_google_spanner.vector_store.SecondaryIndex]
 ] = None,
)

Generate SQL for creating the vector store table.

See more: langchain_google_spanner.vector_store.SpannerVectorStore._generate_sql

langchain_google_spanner.vector_store.SpannerVectorStore._select_relevance_score_fn

_select_relevance_score_fn() -> typing.Callable[[float], float]

The 'correct' relevance function may differ depending on a few things, including:

  • the distance / similarity metric used by the VectorStore
  • the scale of your embeddings (OpenAI's are unit normed.

See more: langchain_google_spanner.vector_store.SpannerVectorStore._select_relevance_score_fn

langchain_google_spanner.vector_store.SpannerVectorStore.add_documents

add_documents(
 documents: typing.List[langchain_core.documents.base.Document],
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

langchain_google_spanner.vector_store.SpannerVectorStore.add_texts

add_texts(
 texts: typing.Iterable[str],
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 batch_size: int = 5000,
 **kwargs: typing.Any
) -> typing.List[str]

Add texts to the vector store index.

See more: langchain_google_spanner.vector_store.SpannerVectorStore.add_texts

langchain_google_spanner.vector_store.SpannerVectorStore.delete

delete(
 ids: typing.Optional[typing.List[str]] = None,
 documents: typing.Optional[
 typing.List[langchain_core.documents.base.Document]
 ] = None,
 **kwargs: typing.Any
) -> typing.Optional[bool]

Delete records from the vector store.

See more: langchain_google_spanner.vector_store.SpannerVectorStore.delete

langchain_google_spanner.vector_store.SpannerVectorStore.from_documents

from_documents(documents: typing.List[langchain_core.documents.base.Document], embedding: langchain_core.embeddings.embeddings.Embeddings, instance_id: str, database_id: str, table_name: str, id_column: str = 'langchain_id', content_column: str = 'content', embedding_column: str = 'embedding', ids: typing.Optional[typing.List[str]] = None, client: typing.Optional[google.cloud.spanner_v1.client.Client] = None, metadata_columns: typing.Optional[typing.List[str]] = None, ignore_metadata_columns: typing.Optional[typing.List[str]] = None, metadata_json_column: typing.Optional[str] = None, query_parameter: langchain_google_spanner.vector_store.QueryParameters = 

Initialize SpannerVectorStore from a list of documents.

See more: langchain_google_spanner.vector_store.SpannerVectorStore.from_documents

langchain_google_spanner.vector_store.SpannerVectorStore.from_texts

from_texts(texts: typing.List[str], embedding: langchain_core.embeddings.embeddings.Embeddings, instance_id: str, database_id: str, table_name: str, metadatas: typing.Optional[typing.List[dict]] = None, id_column: str = 'langchain_id', content_column: str = 'content', embedding_column: str = 'embedding', ids: typing.Optional[typing.List[str]] = None, client: typing.Optional[google.cloud.spanner_v1.client.Client] = None, metadata_columns: typing.Optional[typing.List[str]] = None, ignore_metadata_columns: typing.Optional[typing.List[str]] = None, metadata_json_column: typing.Optional[str] = None, query_parameter: langchain_google_spanner.vector_store.QueryParameters = 

Initialize SpannerVectorStore from a list of texts.

See more: langchain_google_spanner.vector_store.SpannerVectorStore.from_texts

langchain_google_spanner.vector_store.SpannerVectorStore.init_vector_store_table

init_vector_store_table(
 instance_id: str,
 database_id: str,
 table_name: str,
 client: typing.Optional[google.cloud.spanner_v1.client.Client] = None,
 id_column: typing.Union[
 str, langchain_google_spanner.vector_store.TableColumn
 ] = "langchain_id",
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.Optional[
 typing.List[langchain_google_spanner.vector_store.TableColumn]
 ] = None,
 primary_key: typing.Optional[str] = None,
 vector_size: typing.Optional[int] = None,
 secondary_indexes: typing.Optional[
 typing.List[langchain_google_spanner.vector_store.SecondaryIndex]
 ] = None,
) -> bool

Initialize the vector store new table in Google Cloud Spanner.

See more: langchain_google_spanner.vector_store.SpannerVectorStore.init_vector_store_table

langchain_google_spanner.vector_store.SpannerVectorStore.max_marginal_relevance_search

max_marginal_relevance_search(
 query: str,
 k: int = 4,
 fetch_k: int = 20,
 lambda_mult: float = 0.5,
 pre_filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_spanner.vector_store.SpannerVectorStore.max_marginal_relevance_search

langchain_google_spanner.vector_store.SpannerVectorStore.max_marginal_relevance_search_by_vector

max_marginal_relevance_search_by_vector(
 embedding: typing.List[float],
 k: int = 4,
 fetch_k: int = 20,
 lambda_mult: float = 0.5,
 pre_filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_spanner.vector_store.SpannerVectorStore.max_marginal_relevance_search_by_vector

langchain_google_spanner.vector_store.SpannerVectorStore.max_marginal_relevance_search_with_score_by_vector

max_marginal_relevance_search_with_score_by_vector(
 embedding: typing.List[float],
 k: int = 4,
 fetch_k: int = 20,
 lambda_mult: float = 0.5,
 pre_filter: typing.Optional[str] = None,
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Return docs and their similarity scores selected using the maximal marginal relevance.

See more: langchain_google_spanner.vector_store.SpannerVectorStore.max_marginal_relevance_search_with_score_by_vector

langchain_google_spanner.vector_store.SpannerVectorStore.similarity_search

similarity_search(
 query: str,
 k: int = 4,
 pre_filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Perform similarity search for a given query.

See more: langchain_google_spanner.vector_store.SpannerVectorStore.similarity_search

langchain_google_spanner.vector_store.SpannerVectorStore.similarity_search_by_vector

similarity_search_by_vector(
 embedding: typing.List[float],
 k: int = 4,
 pre_filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

langchain_google_spanner.vector_store.SpannerVectorStore.similarity_search_with_score

similarity_search_with_score(
 query: str,
 k: int = 4,
 pre_filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Perform similarity search for a given query with scores.

See more: langchain_google_spanner.vector_store.SpannerVectorStore.similarity_search_with_score

langchain_google_spanner.vector_store.SpannerVectorStore.similarity_search_with_score_by_vector

similarity_search_with_score_by_vector(
 embedding: typing.List[float],
 k: int = 4,
 pre_filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年10月30日 UTC.