Package Methods (0.3.0)

Summary of entries of Methods for langchain-google-memorystore-redis.

langchain_google_memorystore_redis.chat_message_history.MemorystoreChatMessageHistory

MemorystoreChatMessageHistory(
 client: typing.Union[redis.client.Redis, redis.cluster.RedisCluster],
 session_id: str,
 ttl: typing.Optional[int] = None,
)

Initializes the chat message history for Memorystore for Redis.

See more: langchain_google_memorystore_redis.chat_message_history.MemorystoreChatMessageHistory

langchain_google_memorystore_redis.chat_message_history.MemorystoreChatMessageHistory.add_message

add_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_memorystore_redis.chat_message_history.MemorystoreChatMessageHistory.clear

clear() -> None

langchain_google_memorystore_redis.loader.MemorystoreDocumentLoader

MemorystoreDocumentLoader(
 client: typing.Union[redis.client.Redis, redis.cluster.RedisCluster],
 key_prefix: str,
 content_fields: typing.Set[str],
 metadata_fields: typing.Optional[typing.Set[str]] = None,
 batch_size: int = 100,
)

Initializes the Document Loader for Memorystore for Redis.

See more: langchain_google_memorystore_redis.loader.MemorystoreDocumentLoader

langchain_google_memorystore_redis.loader.MemorystoreDocumentLoader._construct_document

_construct_document(stored_value) -> langchain_core.documents.base.Document

langchain_google_memorystore_redis.loader.MemorystoreDocumentLoader._decode_if_json_parsable

_decode_if_json_parsable(s: str) -> typing.Union[str, dict]

langchain_google_memorystore_redis.loader.MemorystoreDocumentLoader.lazy_load

lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]

Lazy load the Documents and yield them one by one.

See more: langchain_google_memorystore_redis.loader.MemorystoreDocumentLoader.lazy_load

langchain_google_memorystore_redis.loader.MemorystoreDocumentLoader.load

load() -> typing.List[langchain_core.documents.base.Document]

Load all Documents using a Redis pipeline for efficiency.

See more: langchain_google_memorystore_redis.loader.MemorystoreDocumentLoader.load

langchain_google_memorystore_redis.vectorstore.FLATConfig

FLATConfig(
 name: str,
 field_name: typing.Optional[str] = None,
 vector_size: int = 128,
 distance_strategy: langchain_community.vectorstores.utils.DistanceStrategy = DistanceStrategy.COSINE,
)

Initializes the FLATConfig object.

See more: langchain_google_memorystore_redis.vectorstore.FLATConfig

langchain_google_memorystore_redis.vectorstore.IndexConfig

IndexConfig(name: str, field_name: str, type: str)

Initializes the IndexConfig object.

See more: langchain_google_memorystore_redis.vectorstore.IndexConfig

langchain_google_memorystore_redis.vectorstore.RedisVectorStore._similarity_search_by_vector_with_score_and_embeddings

_similarity_search_by_vector_with_score_and_embeddings(
 query_embedding: typing.List[float], k: int = 4, **kwargs: typing.Any
) -> typing.List[
 typing.Tuple[langchain_core.documents.base.Document, float, typing.List[float]]
]

Performs a similarity search by a vector with score and embeddings, offering various customization options via keyword arguments.

See more: langchain_google_memorystore_redis.vectorstore.RedisVectorStore._similarity_search_by_vector_with_score_and_embeddings

langchain_google_memorystore_redis.vectorstore.RedisVectorStore.add_texts

add_texts(
 texts: typing.Iterable[str],
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 batch_size: typing.Optional[int] = 1000,
 **kwargs: typing.Any
) -> typing.List[str]

Adds a collection of texts along with their metadata to a vector store, generating unique keys for each entry if not provided.

See more: langchain_google_memorystore_redis.vectorstore.RedisVectorStore.add_texts

langchain_google_memorystore_redis.vectorstore.RedisVectorStore.delete

delete(
 ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any
) -> typing.Optional[bool]

Delete by vector ID or other criteria.

See more: langchain_google_memorystore_redis.vectorstore.RedisVectorStore.delete

langchain_google_memorystore_redis.vectorstore.RedisVectorStore.drop_index

drop_index(
 client: typing.Union[redis.client.Redis, redis.cluster.RedisCluster],
 index_name: str,
 index_only: bool = True,
)

Drops an index from the Redis database.

See more: langchain_google_memorystore_redis.vectorstore.RedisVectorStore.drop_index

langchain_google_memorystore_redis.vectorstore.RedisVectorStore.from_texts

from_texts(
 texts: typing.List[str],
 embedding: langchain_core.embeddings.embeddings.Embeddings,
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 client: typing.Optional[
 typing.Union[redis.client.Redis, redis.cluster.RedisCluster]
 ] = None,
 index_name: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> langchain_google_memorystore_redis.vectorstore.RedisVectorStore

Creates an instance of RedisVectorStore from provided texts.

See more: langchain_google_memorystore_redis.vectorstore.RedisVectorStore.from_texts

langchain_google_memorystore_redis.vectorstore.RedisVectorStore.init_index

init_index(
 client: typing.Union[redis.client.Redis, redis.cluster.RedisCluster],
 index_config: langchain_google_memorystore_redis.vectorstore.IndexConfig,
)

Initializes a named VectorStore index in Redis with specified configurations.

See more: langchain_google_memorystore_redis.vectorstore.RedisVectorStore.init_index

langchain_google_memorystore_redis.vectorstore.RedisVectorStore.max_marginal_relevance_search

max_marginal_relevance_search(
 query: str,
 k: int = 4,
 fetch_k: int = 20,
 lambda_mult: float = 0.5,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Performs a search to find documents that are both relevant to the query and diverse among each other based on Maximal Marginal Relevance (MMR).

See more: langchain_google_memorystore_redis.vectorstore.RedisVectorStore.max_marginal_relevance_search

langchain_google_memorystore_redis.vectorstore.RedisVectorStore.similarity_search

similarity_search(
 query: str, k: int = 4, **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Conducts a similarity search based on the specified query, returning a list of the top 'k' documents that are most similar to the query.

See more: langchain_google_memorystore_redis.vectorstore.RedisVectorStore.similarity_search

langchain_google_memorystore_redis.vectorstore.RedisVectorStore.similarity_search_by_vector

similarity_search_by_vector(
 embedding: typing.List[float], k: int = 4, **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Performs a similarity search for the given embedding and returns the top k most similar Document objects, discarding their similarity scores.

See more: langchain_google_memorystore_redis.vectorstore.RedisVectorStore.similarity_search_by_vector

langchain_google_memorystore_redis.vectorstore.RedisVectorStore.similarity_search_with_score

similarity_search_with_score(
 query: str, k: int = 4, **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Performs a similarity search using the given query, returning documents and their similarity scores.

See more: langchain_google_memorystore_redis.vectorstore.RedisVectorStore.similarity_search_with_score

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年10月30日 UTC.