Package Methods (0.3.0)

Summary of entries of Methods for langchain-google-cloud-sql-mysql.

langchain_google_cloud_sql_mysql.engine._get_iam_principal_email

_get_iam_principal_email(credentials: google.auth.credentials.Credentials) -> str

Get email address associated with current authenticated IAM principal.

See more: langchain_google_cloud_sql_mysql.engine._get_iam_principal_email

langchain_google_cloud_sql_mysql.vectorstore.cosine_similarity

cosine_similarity(
 X: typing.Union[
 typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray
 ],
 Y: typing.Union[
 typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray
 ],
) -> numpy.ndarray

Row-wise cosine similarity between two equal-width matrices.

See more: langchain_google_cloud_sql_mysql.vectorstore.cosine_similarity

langchain_google_cloud_sql_mysql.vectorstore.maximal_marginal_relevance

maximal_marginal_relevance(
 query_embedding: numpy.ndarray,
 embedding_list: list,
 lambda_mult: float = 0.5,
 k: int = 4,
) -> typing.List[int]

Calculate maximal marginal relevance.

See more: langchain_google_cloud_sql_mysql.vectorstore.maximal_marginal_relevance

langchain_google_cloud_sql_mysql.chat_message_history.MySQLChatMessageHistory._verify_schema

_verify_schema() -> None

Verify table exists with required schema for MySQLChatMessageHistory class.

See more: langchain_google_cloud_sql_mysql.chat_message_history.MySQLChatMessageHistory._verify_schema

langchain_google_cloud_sql_mysql.chat_message_history.MySQLChatMessageHistory.add_message

add_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_cloud_sql_mysql.chat_message_history.MySQLChatMessageHistory.clear

clear() -> None

langchain_google_cloud_sql_mysql.engine.MySQLEngine._create_connector_engine

_create_connector_engine(
 instance_connection_name: str,
 database: str,
 user: typing.Optional[str],
 password: typing.Optional[str],
) -> sqlalchemy.engine.base.Engine

Create a SQLAlchemy engine using the Cloud SQL Python Connector.

See more: langchain_google_cloud_sql_mysql.engine.MySQLEngine._create_connector_engine

langchain_google_cloud_sql_mysql.engine.MySQLEngine._execute

_execute(query: str, params: typing.Optional[dict] = None) -> None

Executes a SQL query within a transaction.

See more: langchain_google_cloud_sql_mysql.engine.MySQLEngine._execute

langchain_google_cloud_sql_mysql.engine.MySQLEngine._execute_outside_tx

_execute_outside_tx(query: str, params: typing.Optional[dict] = None) -> None

Executes a SQL query with autocommit (outside of transaction).

See more: langchain_google_cloud_sql_mysql.engine.MySQLEngine._execute_outside_tx

langchain_google_cloud_sql_mysql.engine.MySQLEngine._fetch

_fetch(query: str, params: typing.Optional[dict] = None)

Fetch results from a SQL query.

See more: langchain_google_cloud_sql_mysql.engine.MySQLEngine._fetch

langchain_google_cloud_sql_mysql.engine.MySQLEngine._fetch_rows

_fetch_rows(query: str, params: typing.Optional[dict] = None)

Fetch results from a SQL query as rows.

See more: langchain_google_cloud_sql_mysql.engine.MySQLEngine._fetch_rows

langchain_google_cloud_sql_mysql.engine.MySQLEngine._load_document_table

_load_document_table(table_name: str) -> sqlalchemy.sql.schema.Table

Load table schema from existing table in MySQL database.

See more: langchain_google_cloud_sql_mysql.engine.MySQLEngine._load_document_table

langchain_google_cloud_sql_mysql.engine.MySQLEngine.connect

connect() -> sqlalchemy.engine.base.Connection

Create a connection from SQLAlchemy connection pool.

See more: langchain_google_cloud_sql_mysql.engine.MySQLEngine.connect

langchain_google_cloud_sql_mysql.engine.MySQLEngine.from_instance

from_instance(
 project_id: str,
 region: str,
 instance: str,
 database: str,
 user: typing.Optional[str] = None,
 password: typing.Optional[str] = None,
) -> langchain_google_cloud_sql_mysql.engine.MySQLEngine

Create an instance of MySQLEngine from Cloud SQL instance details.

See more: langchain_google_cloud_sql_mysql.engine.MySQLEngine.from_instance

langchain_google_cloud_sql_mysql.engine.MySQLEngine.init_chat_history_table

init_chat_history_table(table_name: str) -> None

Create table with schema required for MySQLChatMessageHistory class.

See more: langchain_google_cloud_sql_mysql.engine.MySQLEngine.init_chat_history_table

langchain_google_cloud_sql_mysql.engine.MySQLEngine.init_document_table

init_document_table(
 table_name: str,
 metadata_columns: typing.List[sqlalchemy.sql.schema.Column] = [],
 content_column: str = "page_content",
 metadata_json_column: typing.Optional[str] = "langchain_metadata",
 overwrite_existing: bool = False,
) -> None

Create a table for saving of langchain documents.

See more: langchain_google_cloud_sql_mysql.engine.MySQLEngine.init_document_table

langchain_google_cloud_sql_mysql.engine.MySQLEngine.init_vectorstore_table

init_vectorstore_table(
 table_name: str,
 vector_size: int,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[langchain_google_cloud_sql_mysql.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 id_column: str = "langchain_id",
 overwrite_existing: bool = False,
 store_metadata: bool = True,
) -> None

Create a table for saving of vectors to be used with MySQLVectorStore.

See more: langchain_google_cloud_sql_mysql.engine.MySQLEngine.init_vectorstore_table

langchain_google_cloud_sql_mysql.indexes.VectorIndex

VectorIndex(
 name: typing.Optional[str] = None,
 index_type: typing.Optional[
 langchain_google_cloud_sql_mysql.indexes.IndexType
 ] = None,
 distance_measure: typing.Optional[
 langchain_google_cloud_sql_mysql.indexes.DistanceMeasure
 ] = None,
 num_partitions: typing.Optional[int] = None,
 num_neighbors: typing.Optional[int] = None,
)

Initializes a new instance of the VectorIndex class.

See more: langchain_google_cloud_sql_mysql.indexes.VectorIndex

langchain_google_cloud_sql_mysql.loader.MySQLDocumentSaver

MySQLDocumentSaver(
 engine: langchain_google_cloud_sql_mysql.engine.MySQLEngine,
 table_name: str,
 content_column: typing.Optional[str] = None,
 metadata_json_column: typing.Optional[str] = None,
)

MySQLDocumentSaver allows for saving of langchain documents in a database.

See more: langchain_google_cloud_sql_mysql.loader.MySQLDocumentSaver

langchain_google_cloud_sql_mysql.loader.MySQLDocumentSaver.add_documents

add_documents(docs: typing.List[langchain_core.documents.base.Document]) -> None

Save documents in the DocumentSaver table.

See more: langchain_google_cloud_sql_mysql.loader.MySQLDocumentSaver.add_documents

langchain_google_cloud_sql_mysql.loader.MySQLDocumentSaver.delete

delete(docs: typing.List[langchain_core.documents.base.Document]) -> None

Delete all instances of a document from the DocumentSaver table by matching the entire Document object.

See more: langchain_google_cloud_sql_mysql.loader.MySQLDocumentSaver.delete

langchain_google_cloud_sql_mysql.loader.MySQLLoader

MySQLLoader(
 engine: langchain_google_cloud_sql_mysql.engine.MySQLEngine,
 table_name: str = "",
 query: str = "",
 content_columns: typing.Optional[typing.List[str]] = None,
 metadata_columns: typing.Optional[typing.List[str]] = None,
 metadata_json_column: typing.Optional[str] = None,
)

Document page content defaults to the first column present in the query or table and metadata defaults to all other columns.

See more: langchain_google_cloud_sql_mysql.loader.MySQLLoader

langchain_google_cloud_sql_mysql.loader.MySQLLoader.lazy_load

lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]

Lazy Load langchain documents from a Cloud SQL MySQL database.

See more: langchain_google_cloud_sql_mysql.loader.MySQLLoader.lazy_load

langchain_google_cloud_sql_mysql.loader.MySQLLoader.load

load() -> typing.List[langchain_core.documents.base.Document]

Load langchain documents from a Cloud SQL MySQL database.

See more: langchain_google_cloud_sql_mysql.loader.MySQLLoader.load

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.add_documents

add_documents(
 documents: typing.List[langchain_core.documents.base.Document],
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

Add or update documents in the vectorstore.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.add_documents

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.add_texts

add_texts(
 texts: typing.Iterable[str],
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

Run more texts through the embeddings and add to the vectorstore.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.add_texts

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.delete

delete(ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any) -> bool

Delete by vector ID or other criteria.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.delete

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.from_documents

from_documents(documents: typing.List[langchain_core.documents.base.Document], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_mysql.engine.MySQLEngine, table_name: str, ids: typing.Optional[typing.List[str]] = None, content_column: str = 'content', embedding_column: str = 'embedding', metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = 'langchain_id', metadata_json_column: str = 'langchain_metadata', query_options: langchain_google_cloud_sql_mysql.indexes.QueryOptions = QueryOptions(num_partitions=None, num_neighbors=10, distance_measure=

Return VectorStore initialized from documents and embeddings.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.from_documents

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.from_texts

from_texts(texts: typing.List[str], embedding: langchain_core.embeddings.embeddings.Embeddings, engine: langchain_google_cloud_sql_mysql.engine.MySQLEngine, table_name: str, metadatas: typing.Optional[typing.List[dict]] = None, ids: typing.Optional[typing.List[str]] = None, content_column: str = 'content', embedding_column: str = 'embedding', metadata_columns: typing.List[str] = [], ignore_metadata_columns: typing.Optional[typing.List[str]] = None, id_column: str = 'langchain_id', metadata_json_column: str = 'langchain_metadata', query_options: langchain_google_cloud_sql_mysql.indexes.QueryOptions = QueryOptions(num_partitions=None, num_neighbors=10, distance_measure=

Return VectorStore initialized from texts and embeddings.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.from_texts

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.max_marginal_relevance_search

max_marginal_relevance_search(
 query: str,
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 query_options: typing.Optional[
 langchain_google_cloud_sql_mysql.indexes.QueryOptions
 ] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Performs Maximal Marginal Relevance (MMR) search based on a text query.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.max_marginal_relevance_search

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.max_marginal_relevance_search_by_vector

max_marginal_relevance_search_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 query_options: typing.Optional[
 langchain_google_cloud_sql_mysql.indexes.QueryOptions
 ] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Performs Maximal Marginal Relevance (MMR) search based on a vector embedding.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.max_marginal_relevance_search_by_vector

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.max_marginal_relevance_search_with_score_by_vector

max_marginal_relevance_search_with_score_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 query_options: typing.Optional[
 langchain_google_cloud_sql_mysql.indexes.QueryOptions
 ] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Performs Maximal Marginal Relevance (MMR) search based on a vector embedding and returns documents with scores.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.max_marginal_relevance_search_with_score_by_vector

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.similarity_search

similarity_search(
 query: str,
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Searches for similar documents based on a text query.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.similarity_search

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.similarity_search_by_vector

similarity_search_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 query_options: typing.Optional[
 langchain_google_cloud_sql_mysql.indexes.QueryOptions
 ] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Searches for similar documents based on a vector embedding.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.similarity_search_by_vector

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.similarity_search_with_score

similarity_search_with_score(
 query: str,
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 query_options: typing.Optional[
 langchain_google_cloud_sql_mysql.indexes.QueryOptions
 ] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Searches for similar documents based on a text query and returns their scores.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.similarity_search_with_score

langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.similarity_search_with_score_by_vector

similarity_search_with_score_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 query_options: typing.Optional[
 langchain_google_cloud_sql_mysql.indexes.QueryOptions
 ] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Searches for similar documents based on a vector embedding and returns their scores.

See more: langchain_google_cloud_sql_mysql.vectorstore.MySQLVectorStore.similarity_search_with_score_by_vector

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年10月30日 UTC.