Package Methods (0.6.0)

Summary of entries of Methods for langchain-google-alloydb-pg.

langchain_google_alloydb_pg.chat_message_history._aget_messages

_aget_messages(
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 session_id: str,
 table_name: str,
) -> typing.List[langchain_core.messages.base.BaseMessage]

Retrieve the messages from AlloyDB.

See more: langchain_google_alloydb_pg.chat_message_history._aget_messages

langchain_google_alloydb_pg.engine._get_iam_principal_email

_get_iam_principal_email(credentials: google.auth.credentials.Credentials) -> str

Get email address associated with current authenticated IAM principal.

See more: langchain_google_alloydb_pg.engine._get_iam_principal_email

langchain_google_alloydb_pg.loader._parse_doc_from_row

_parse_doc_from_row(content_columns: typing.Iterable[str], metadata_columns: typing.Iterable[str], row: typing.Dict[str, typing.Any], metadata_json_column: typing.Optional[str] = 'langchain_metadata', formatter: typing.Callable[[typing.Dict[str, typing.Any], typing.Iterable[str]], str] = 

Parse row into document.

See more: langchain_google_alloydb_pg.loader._parse_doc_from_row

langchain_google_alloydb_pg.loader._parse_row_from_doc

_parse_row_from_doc(
 doc: langchain_core.documents.base.Document,
 column_names: typing.Iterable[str],
 content_column: str = "page_content",
 metadata_json_column: typing.Optional[str] = "langchain_metadata",
) -> typing.Dict[str, typing.Any]

Parse document into a dictionary of rows.

See more: langchain_google_alloydb_pg.loader._parse_row_from_doc

langchain_google_alloydb_pg.loader.csv_formatter

csv_formatter(
 row: typing.Dict[str, typing.Any], content_columns: typing.Iterable[str]
) -> str

CSV document formatter.

See more: langchain_google_alloydb_pg.loader.csv_formatter

langchain_google_alloydb_pg.loader.json_formatter

json_formatter(
 row: typing.Dict[str, typing.Any], content_columns: typing.Iterable[str]
) -> str

JSON document formatter.

See more: langchain_google_alloydb_pg.loader.json_formatter

langchain_google_alloydb_pg.loader.text_formatter

text_formatter(
 row: typing.Dict[str, typing.Any], content_columns: typing.Iterable[str]
) -> str

txt document formatter.

See more: langchain_google_alloydb_pg.loader.text_formatter

langchain_google_alloydb_pg.loader.yaml_formatter

yaml_formatter(
 row: typing.Dict[str, typing.Any], content_columns: typing.Iterable[str]
) -> str

YAML document formatter.

See more: langchain_google_alloydb_pg.loader.yaml_formatter

langchain_google_alloydb_pg.vectorstore.cosine_similarity

cosine_similarity(
 X: typing.Union[
 typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray
 ],
 Y: typing.Union[
 typing.List[typing.List[float]], typing.List[numpy.ndarray], numpy.ndarray
 ],
) -> numpy.ndarray

Row-wise cosine similarity between two equal-width matrices.

See more: langchain_google_alloydb_pg.vectorstore.cosine_similarity

langchain_google_alloydb_pg.vectorstore.maximal_marginal_relevance

maximal_marginal_relevance(
 query_embedding: numpy.ndarray,
 embedding_list: list,
 lambda_mult: float = 0.5,
 k: int = 4,
) -> typing.List[int]

Calculate maximal marginal relevance.

See more: langchain_google_alloydb_pg.vectorstore.maximal_marginal_relevance

langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory

AlloyDBChatMessageHistory(
 key: object,
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 session_id: str,
 table_name: str,
 messages: typing.List[langchain_core.messages.base.BaseMessage],
)

AlloyDBChatMessageHistory constructor.

See more: langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory

langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.aadd_message

aadd_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.aadd_messages

aadd_messages(
 messages: typing.Sequence[langchain_core.messages.base.BaseMessage],
) -> None

Append a list of messages to the record in AlloyDB.

See more: langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.aadd_messages

langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.aclear

aclear() -> None

langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.add_message

add_message(message: langchain_core.messages.base.BaseMessage) -> None

langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.add_messages

add_messages(
 messages: typing.Sequence[langchain_core.messages.base.BaseMessage],
) -> None

Append a list of messages to the record in AlloyDB.

See more: langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.add_messages

langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.async_messages

async_messages() -> None

langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.clear

clear() -> None

langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.create

create(
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 session_id: str,
 table_name: str,
) -> langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory

Create a new AlloyDBChatMessageHistory instance.

See more: langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.create

langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.create_sync

create_sync(
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 session_id: str,
 table_name: str,
) -> langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory

Create a new AlloyDBChatMessageHistory instance.

See more: langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.create_sync

langchain_google_alloydb_pg.chat_message_history.AlloyDBChatMessageHistory.sync_messages

sync_messages() -> None

langchain_google_alloydb_pg.engine.AlloyDBEngine

AlloyDBEngine(
 key: object,
 engine: sqlalchemy.ext.asyncio.engine.AsyncEngine,
 loop: typing.Optional[asyncio.events.AbstractEventLoop],
 thread: typing.Optional[threading.Thread],
)

AlloyDBEngine constructor.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine

langchain_google_alloydb_pg.engine.AlloyDBEngine._aexecute

_aexecute(query: str, params: typing.Optional[dict] = None) -> None

langchain_google_alloydb_pg.engine.AlloyDBEngine._aexecute_outside_tx

_aexecute_outside_tx(query: str) -> None

Execute a SQL query in a new transaction.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine._aexecute_outside_tx

langchain_google_alloydb_pg.engine.AlloyDBEngine._afetch

_afetch(
 query: str, params: typing.Optional[dict] = None
) -> typing.Sequence[sqlalchemy.engine.row.RowMapping]

Fetch results from a SQL query.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine._afetch

langchain_google_alloydb_pg.engine.AlloyDBEngine._afetch_with_query_options

_afetch_with_query_options(
 query: str, query_options: str
) -> typing.Sequence[sqlalchemy.engine.row.RowMapping]

Set temporary database flags and fetch results from a SQL query.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine._afetch_with_query_options

langchain_google_alloydb_pg.engine.AlloyDBEngine._aload_table_schema

_aload_table_schema(table_name: str) -> sqlalchemy.sql.schema.Table

Load table schema from existing table in PgSQL database.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine._aload_table_schema

langchain_google_alloydb_pg.engine.AlloyDBEngine._create

_create(
 project_id: str,
 region: str,
 cluster: str,
 instance: str,
 database: str,
 ip_type: typing.Union[str, google.cloud.alloydb.connector.enums.IPTypes],
 user: typing.Optional[str] = None,
 password: typing.Optional[str] = None,
 loop: typing.Optional[asyncio.events.AbstractEventLoop] = None,
 thread: typing.Optional[threading.Thread] = None,
 iam_account_email: typing.Optional[str] = None,
) -> langchain_google_alloydb_pg.engine.AlloyDBEngine

Create an AlloyDBEngine from an AlloyDB instance.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine._create

langchain_google_alloydb_pg.engine.AlloyDBEngine._execute

_execute(query: str, params: typing.Optional[dict] = None) -> None

langchain_google_alloydb_pg.engine.AlloyDBEngine._fetch

_fetch(
 query: str, params: typing.Optional[dict] = None
) -> typing.Sequence[sqlalchemy.engine.row.RowMapping]

Fetch results from a SQL query.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine._fetch

langchain_google_alloydb_pg.engine.AlloyDBEngine._run_as_sync

_run_as_sync(
 coro: typing.Awaitable[langchain_google_alloydb_pg.engine.T],
) -> langchain_google_alloydb_pg.engine.T

Run an async coroutine synchronously.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine._run_as_sync

langchain_google_alloydb_pg.engine.AlloyDBEngine.afrom_instance

afrom_instance(
 project_id: str,
 region: str,
 cluster: str,
 instance: str,
 database: str,
 user: typing.Optional[str] = None,
 password: typing.Optional[str] = None,
 ip_type: typing.Union[
 str, google.cloud.alloydb.connector.enums.IPTypes
 ] = IPTypes.PUBLIC,
 iam_account_email: typing.Optional[str] = None,
) -> langchain_google_alloydb_pg.engine.AlloyDBEngine

Create an AlloyDBEngine from an AlloyDB instance.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine.afrom_instance

langchain_google_alloydb_pg.engine.AlloyDBEngine.ainit_chat_history_table

ainit_chat_history_table(table_name: str) -> None

Create an AlloyDB table to save chat history messages.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine.ainit_chat_history_table

langchain_google_alloydb_pg.engine.AlloyDBEngine.ainit_document_table

ainit_document_table(
 table_name: str,
 content_column: str = "page_content",
 metadata_columns: typing.List[langchain_google_alloydb_pg.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 store_metadata: bool = True,
) -> None

Create a table for saving of langchain documents.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine.ainit_document_table

langchain_google_alloydb_pg.engine.AlloyDBEngine.ainit_vectorstore_table

ainit_vectorstore_table(
 table_name: str,
 vector_size: int,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[langchain_google_alloydb_pg.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 id_column: str = "langchain_id",
 overwrite_existing: bool = False,
 store_metadata: bool = True,
) -> None

Create a table for saving of vectors to be used with AlloyDB.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine.ainit_vectorstore_table

langchain_google_alloydb_pg.engine.AlloyDBEngine.from_engine

from_engine(
 engine: sqlalchemy.ext.asyncio.engine.AsyncEngine,
) -> langchain_google_alloydb_pg.engine.AlloyDBEngine

Create an AlloyDBEngine instance from an AsyncEngine.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine.from_engine

langchain_google_alloydb_pg.engine.AlloyDBEngine.from_instance

from_instance(
 project_id: str,
 region: str,
 cluster: str,
 instance: str,
 database: str,
 user: typing.Optional[str] = None,
 password: typing.Optional[str] = None,
 ip_type: typing.Union[
 str, google.cloud.alloydb.connector.enums.IPTypes
 ] = IPTypes.PUBLIC,
 iam_account_email: typing.Optional[str] = None,
) -> langchain_google_alloydb_pg.engine.AlloyDBEngine

Create an AlloyDBEngine from an AlloyDB instance.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine.from_instance

langchain_google_alloydb_pg.engine.AlloyDBEngine.init_chat_history_table

init_chat_history_table(table_name: str) -> None

Create an AlloyDB table to save chat history messages.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine.init_chat_history_table

langchain_google_alloydb_pg.engine.AlloyDBEngine.init_document_table

init_document_table(
 table_name: str,
 content_column: str = "page_content",
 metadata_columns: typing.List[langchain_google_alloydb_pg.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 store_metadata: bool = True,
) -> None

Create a table for saving of langchain documents.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine.init_document_table

langchain_google_alloydb_pg.engine.AlloyDBEngine.init_vectorstore_table

init_vectorstore_table(
 table_name: str,
 vector_size: int,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[langchain_google_alloydb_pg.engine.Column] = [],
 metadata_json_column: str = "langchain_metadata",
 id_column: str = "langchain_id",
 overwrite_existing: bool = False,
 store_metadata: bool = True,
) -> None

Create a table for saving of vectors to be used with AlloyDB.

See more: langchain_google_alloydb_pg.engine.AlloyDBEngine.init_vectorstore_table

langchain_google_alloydb_pg.engine.Column.__post_init__

__post_init__() -> None

Check if initialization parameters are valid.

See more: langchain_google_alloydb_pg.engine.Column.post_init

langchain_google_alloydb_pg.indexes.BaseIndex.index_options

index_options() -> str

Set index query options for vector store initialization.

See more: langchain_google_alloydb_pg.indexes.BaseIndex.index_options

langchain_google_alloydb_pg.indexes.DistanceStrategy._generate_next_value_

_generate_next_value_(start, count, last_values)

Generate the next value when not given.

See more: langchain_google_alloydb_pg.indexes.DistanceStrategy.generate_next_value

langchain_google_alloydb_pg.indexes.HNSWIndex.index_options

index_options() -> str

Set index query options for vector store initialization.

See more: langchain_google_alloydb_pg.indexes.HNSWIndex.index_options

langchain_google_alloydb_pg.indexes.HNSWQueryOptions.to_string

to_string() -> str

Convert index attributes to string.

See more: langchain_google_alloydb_pg.indexes.HNSWQueryOptions.to_string

langchain_google_alloydb_pg.indexes.IVFFlatIndex.index_options

index_options() -> str

Set index query options for vector store initialization.

See more: langchain_google_alloydb_pg.indexes.IVFFlatIndex.index_options

langchain_google_alloydb_pg.indexes.IVFFlatQueryOptions.to_string

to_string() -> str

Convert index attributes to string.

See more: langchain_google_alloydb_pg.indexes.IVFFlatQueryOptions.to_string

langchain_google_alloydb_pg.indexes.IVFIndex.index_options

index_options() -> str

Set index query options for vector store initialization.

See more: langchain_google_alloydb_pg.indexes.IVFIndex.index_options

langchain_google_alloydb_pg.indexes.IVFQueryOptions.to_string

to_string() -> str

Convert index attributes to string.

See more: langchain_google_alloydb_pg.indexes.IVFQueryOptions.to_string

langchain_google_alloydb_pg.indexes.QueryOptions.to_string

to_string() -> str

Convert index attributes to string.

See more: langchain_google_alloydb_pg.indexes.QueryOptions.to_string

langchain_google_alloydb_pg.indexes.ScaNNIndex.index_options

index_options() -> str

Set index query options for vector store initialization.

See more: langchain_google_alloydb_pg.indexes.ScaNNIndex.index_options

langchain_google_alloydb_pg.indexes.ScaNNQueryOptions.to_string

to_string() -> str

Convert index attributes to string.

See more: langchain_google_alloydb_pg.indexes.ScaNNQueryOptions.to_string

langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver

AlloyDBDocumentSaver(
 key: object,
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 table_name: str,
 content_column: str,
 metadata_columns: typing.List[str] = [],
 metadata_json_column: typing.Optional[str] = None,
)

AlloyDBDocumentSaver constructor.

See more: langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver

langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.aadd_documents

aadd_documents(docs: typing.List[langchain_core.documents.base.Document]) -> None

Save documents in the DocumentSaver table.

See more: langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.aadd_documents

langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.add_documents

add_documents(docs: typing.List[langchain_core.documents.base.Document]) -> None

Save documents in the DocumentSaver table.

See more: langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.add_documents

langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.adelete

adelete(docs: typing.List[langchain_core.documents.base.Document]) -> None

Delete all instances of a document from the DocumentSaver table by matching the entire Document object.

See more: langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.adelete

langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.create

create(
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 table_name: str,
 content_column: str = "page_content",
 metadata_columns: typing.List[str] = [],
 metadata_json_column: typing.Optional[str] = "langchain_metadata",
) -> langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver

Create an AlloyDBDocumentSaver instance.

See more: langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.create

langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.create_sync

create_sync(
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 table_name: str,
 content_column: str = "page_content",
 metadata_columns: typing.List[str] = [],
 metadata_json_column: str = "langchain_metadata",
) -> langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver

Create an AlloyDBDocumentSaver instance.

See more: langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.create_sync

langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.delete

delete(docs: typing.List[langchain_core.documents.base.Document]) -> None

Delete all instances of a document from the DocumentSaver table by matching the entire Document object.

See more: langchain_google_alloydb_pg.loader.AlloyDBDocumentSaver.delete

langchain_google_alloydb_pg.loader.AlloyDBLoader

AlloyDBLoader(
 key: object,
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 query: str,
 content_columns: typing.List[str],
 metadata_columns: typing.List[str],
 formatter: typing.Callable[
 [typing.Dict[str, typing.Any], typing.Iterable[str]], str
 ],
 metadata_json_column: typing.Optional[str] = None,
)

AlloyDBLoader constructor.

See more: langchain_google_alloydb_pg.loader.AlloyDBLoader

langchain_google_alloydb_pg.loader.AlloyDBLoader._collect_async_items

_collect_async_items(
 docs_generator: typing.AsyncIterator[langchain_core.documents.base.Document],
) -> typing.List[langchain_core.documents.base.Document]

Exhause document generator into a list.

See more: langchain_google_alloydb_pg.loader.AlloyDBLoader._collect_async_items

langchain_google_alloydb_pg.loader.AlloyDBLoader.alazy_load

alazy_load() -> typing.AsyncIterator[langchain_core.documents.base.Document]

Load AlloyDB data into Document objects lazily.

See more: langchain_google_alloydb_pg.loader.AlloyDBLoader.alazy_load

langchain_google_alloydb_pg.loader.AlloyDBLoader.aload

aload() -> typing.List[langchain_core.documents.base.Document]

Load AlloyDB data into Document objects.

See more: langchain_google_alloydb_pg.loader.AlloyDBLoader.aload

langchain_google_alloydb_pg.loader.AlloyDBLoader.create

create(
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 query: typing.Optional[str] = None,
 table_name: typing.Optional[str] = None,
 content_columns: typing.Optional[typing.List[str]] = None,
 metadata_columns: typing.Optional[typing.List[str]] = None,
 metadata_json_column: typing.Optional[str] = None,
 format: typing.Optional[str] = None,
 formatter: typing.Optional[typing.Callable] = None,
) -> langchain_google_alloydb_pg.loader.AlloyDBLoader

Create an AlloyDBLoader instance.

See more: langchain_google_alloydb_pg.loader.AlloyDBLoader.create

langchain_google_alloydb_pg.loader.AlloyDBLoader.create_sync

create_sync(
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 query: typing.Optional[str] = None,
 table_name: typing.Optional[str] = None,
 content_columns: typing.Optional[typing.List[str]] = None,
 metadata_columns: typing.Optional[typing.List[str]] = None,
 metadata_json_column: typing.Optional[str] = None,
 format: typing.Optional[str] = None,
 formatter: typing.Optional[typing.Callable] = None,
) -> langchain_google_alloydb_pg.loader.AlloyDBLoader

Create an AlloyDBLoader instance.

See more: langchain_google_alloydb_pg.loader.AlloyDBLoader.create_sync

langchain_google_alloydb_pg.loader.AlloyDBLoader.lazy_load

lazy_load() -> typing.Iterator[langchain_core.documents.base.Document]

Load AlloyDB data into Document objects lazily.

See more: langchain_google_alloydb_pg.loader.AlloyDBLoader.lazy_load

langchain_google_alloydb_pg.loader.AlloyDBLoader.load

load() -> typing.List[langchain_core.documents.base.Document]

Load AlloyDB data into Document objects.

See more: langchain_google_alloydb_pg.loader.AlloyDBLoader.load

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore

AlloyDBVectorStore(
 key: object,
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 embedding_service: langchain_core.embeddings.embeddings.Embeddings,
 table_name: str,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 id_column: str = "langchain_id",
 metadata_json_column: typing.Optional[str] = "langchain_metadata",
 distance_strategy: langchain_google_alloydb_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
 k: int = 4,
 fetch_k: int = 20,
 lambda_mult: float = 0.5,
 index_query_options: typing.Optional[
 langchain_google_alloydb_pg.indexes.QueryOptions
 ] = None,
)

AlloyDBVectorStore constructor.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.__query_collection

__query_collection(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.Sequence[sqlalchemy.engine.row.RowMapping]

Perform similarity search query on database.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.__query_collection

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore._aadd_embeddings

_aadd_embeddings(
 texts: typing.Iterable[str],
 embeddings: typing.List[typing.List[float]],
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore._select_relevance_score_fn

_select_relevance_score_fn() -> typing.Callable[[float], float]

Select a relevance function based on distance strategy.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore._select_relevance_score_fn

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.aadd_documents

aadd_documents(
 documents: typing.List[langchain_core.documents.base.Document],
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

Embed documents and add to the table.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.aadd_documents

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.aadd_texts

aadd_texts(
 texts: typing.Iterable[str],
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.aapply_vector_index

aapply_vector_index(
 index: langchain_google_alloydb_pg.indexes.BaseIndex,
 name: typing.Optional[str] = None,
 concurrently: bool = False,
) -> None

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.add_documents

add_documents(
 documents: typing.List[langchain_core.documents.base.Document],
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

Embed documents and add to the table.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.add_documents

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.add_texts

add_texts(
 texts: typing.Iterable[str],
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 **kwargs: typing.Any
) -> typing.List[str]

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.adelete

adelete(
 ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any
) -> typing.Optional[bool]

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.adrop_vector_index

adrop_vector_index(index_name: typing.Optional[str] = None) -> None

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.afrom_documents

afrom_documents(
 documents: typing.List[langchain_core.documents.base.Document],
 embedding: langchain_core.embeddings.embeddings.Embeddings,
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 table_name: str,
 ids: typing.Optional[typing.List[str]] = None,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
 id_column: str = "langchain_id",
 metadata_json_column: str = "langchain_metadata",
 **kwargs: typing.Any
) -> langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore

Create an AlloyDBVectorStore instance from documents.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.afrom_documents

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.afrom_texts

afrom_texts(
 texts: typing.List[str],
 embedding: langchain_core.embeddings.embeddings.Embeddings,
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 table_name: str,
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
 id_column: str = "langchain_id",
 metadata_json_column: str = "langchain_metadata",
 **kwargs: typing.Any
) -> langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore

Create an AlloyDBVectorStore instance from texts.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.afrom_texts

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.amax_marginal_relevance_search

amax_marginal_relevance_search(
 query: str,
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.amax_marginal_relevance_search

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.amax_marginal_relevance_search_by_vector

amax_marginal_relevance_search_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.amax_marginal_relevance_search_by_vector

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.amax_marginal_relevance_search_with_score_by_vector

amax_marginal_relevance_search_with_score_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Return docs and distance scores selected using the maximal marginal relevance.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.amax_marginal_relevance_search_with_score_by_vector

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.areindex

areindex(index_name: typing.Optional[str] = None) -> None

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.asimilarity_search

asimilarity_search(
 query: str,
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected by similarity search on query.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.asimilarity_search

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.asimilarity_search_by_vector

asimilarity_search_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected by vector similarity search.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.asimilarity_search_by_vector

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.asimilarity_search_with_score

asimilarity_search_with_score(
 query: str,
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Return docs and distance scores selected by similarity search on query.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.asimilarity_search_with_score

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.asimilarity_search_with_score_by_vector

asimilarity_search_with_score_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Return docs and distance scores selected by vector similarity search.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.asimilarity_search_with_score_by_vector

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.create

create(
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 embedding_service: langchain_core.embeddings.embeddings.Embeddings,
 table_name: str,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
 id_column: str = "langchain_id",
 metadata_json_column: typing.Optional[str] = "langchain_metadata",
 distance_strategy: langchain_google_alloydb_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
 k: int = 4,
 fetch_k: int = 20,
 lambda_mult: float = 0.5,
 index_query_options: typing.Optional[
 langchain_google_alloydb_pg.indexes.QueryOptions
 ] = None,
) -> langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore

Create an AlloyDBVectorStore instance.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.create

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.create_sync

create_sync(
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 embedding_service: langchain_core.embeddings.embeddings.Embeddings,
 table_name: str,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
 id_column: str = "langchain_id",
 metadata_json_column: str = "langchain_metadata",
 distance_strategy: langchain_google_alloydb_pg.indexes.DistanceStrategy = DistanceStrategy.COSINE_DISTANCE,
 k: int = 4,
 fetch_k: int = 20,
 lambda_mult: float = 0.5,
 index_query_options: typing.Optional[
 langchain_google_alloydb_pg.indexes.QueryOptions
 ] = None,
) -> langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore

Create an AlloyDBVectorStore instance.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.create_sync

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.delete

delete(
 ids: typing.Optional[typing.List[str]] = None, **kwargs: typing.Any
) -> typing.Optional[bool]

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.from_documents

from_documents(
 documents: typing.List[langchain_core.documents.base.Document],
 embedding: langchain_core.embeddings.embeddings.Embeddings,
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 table_name: str,
 ids: typing.Optional[typing.List[str]] = None,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
 id_column: str = "langchain_id",
 metadata_json_column: str = "langchain_metadata",
 **kwargs: typing.Any
) -> langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore

Create an AlloyDBVectorStore instance from documents.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.from_documents

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.from_texts

from_texts(
 texts: typing.List[str],
 embedding: langchain_core.embeddings.embeddings.Embeddings,
 engine: langchain_google_alloydb_pg.engine.AlloyDBEngine,
 table_name: str,
 metadatas: typing.Optional[typing.List[dict]] = None,
 ids: typing.Optional[typing.List[str]] = None,
 content_column: str = "content",
 embedding_column: str = "embedding",
 metadata_columns: typing.List[str] = [],
 ignore_metadata_columns: typing.Optional[typing.List[str]] = None,
 id_column: str = "langchain_id",
 metadata_json_column: str = "langchain_metadata",
 **kwargs: typing.Any
) -> langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore

Create an AlloyDBVectorStore instance from texts.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.from_texts

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.is_valid_index

is_valid_index(index_name: typing.Optional[str] = None) -> bool

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.max_marginal_relevance_search

max_marginal_relevance_search(
 query: str,
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.max_marginal_relevance_search

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.max_marginal_relevance_search_by_vector

max_marginal_relevance_search_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected using the maximal marginal relevance.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.max_marginal_relevance_search_by_vector

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.max_marginal_relevance_search_with_score_by_vector

max_marginal_relevance_search_with_score_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 fetch_k: typing.Optional[int] = None,
 lambda_mult: typing.Optional[float] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Return docs and distance scores selected using the maximal marginal relevance.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.max_marginal_relevance_search_with_score_by_vector

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.set_maintenance_work_mem

set_maintenance_work_mem(num_leaves: int, vector_size: int) -> None

Set database maintenance work memory (for ScaNN index creation).

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.set_maintenance_work_mem

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.similarity_search

similarity_search(
 query: str,
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected by similarity search on query.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.similarity_search

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.similarity_search_by_vector

similarity_search_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[langchain_core.documents.base.Document]

Return docs selected by vector similarity search.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.similarity_search_by_vector

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.similarity_search_with_score

similarity_search_with_score(
 query: str,
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Return docs and distance scores selected by similarity search on query.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.similarity_search_with_score

langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.similarity_search_with_score_by_vector

similarity_search_with_score_by_vector(
 embedding: typing.List[float],
 k: typing.Optional[int] = None,
 filter: typing.Optional[str] = None,
 **kwargs: typing.Any
) -> typing.List[typing.Tuple[langchain_core.documents.base.Document, float]]

Return docs and distance scores selected by vector similarity search.

See more: langchain_google_alloydb_pg.vectorstore.AlloyDBVectorStore.similarity_search_with_score_by_vector

Except as otherwise noted, the content of this page is licensed under the Creative Commons Attribution 4.0 License, and code samples are licensed under the Apache 2.0 License. For details, see the Google Developers Site Policies. Java is a registered trademark of Oracle and/or its affiliates.

Last updated 2025年10月30日 UTC.