Class MaxAbsScaler (1.9.0)
 
 
 
 
 
 
 Stay organized with collections
 
 
 
 Save and categorize content based on your preferences.
 
  
 
 - 2.27.0 (latest)
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
MaxAbsScaler()Scale each feature by its maximum absolute value.
This estimator scales and translates each feature individually such that the maximal absolute value of each feature in the training set will be 1.0. It does not shift/center the data, and thus does not destroy any sparsity.
Methods
__repr__
__repr__()Print the estimator's constructor with all non-default parameter values.
fit
fit(
 X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series], y=None
) -> bigframes.ml.preprocessing.MaxAbsScalerCompute the maximum absolute value to be used for later scaling.
| Parameters | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame or bigframes.series.Series The Dataframe or Series with training data. | 
| y | default NoneIgnored. | 
| Returns | |
|---|---|
| Type | Description | 
| MaxAbsScaler | Fitted scaler. | 
fit_transform
fit_transform(
 X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series],
 y: typing.Optional[
 typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
 ] = None,
) -> bigframes.dataframe.DataFrameFit to data, then transform it.
| Parameters | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame or bigframes.series.Series Series or DataFrame of shape (n_samples, n_features). Input samples. | 
| y | bigframes.dataframe.DataFrame or bigframes.series.Series Series or DataFrame of shape (n_samples,) or (n_samples, n_outputs). Default None. Target values (None for unsupervised transformations). | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.dataframe.DataFrame  | DataFrame of shape (n_samples, n_features_new). Transformed DataFrame. | 
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]Get parameters for this estimator.
| Parameter | |
|---|---|
| Name | Description | 
| deep | bool, default TrueDefault  | 
| Returns | |
|---|---|
| Type | Description | 
| Dictionary | A dictionary of parameter names mapped to their values. | 
to_gbq
to_gbq(model_name: str, replace: bool = False) -> bigframes.ml.base._TSave the transformer as a BigQuery model.
| Parameters | |
|---|---|
| Name | Description | 
| model_name | strThe name of the model. | 
| replace | bool, default FalseDetermine whether to replace if the model already exists. Default to False. | 
transform
transform(
 X: typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]
) -> bigframes.dataframe.DataFrameScale the data.
| Parameter | |
|---|---|
| Name | Description | 
| X | bigframes.dataframe.DataFrame or bigframes.series.Series The DataFrame or Series to be transformed. | 
| Returns | |
|---|---|
| Type | Description | 
| bigframes.dataframe.DataFrame  | Transformed result. |