Class SeriesGroupBy (0.22.0)
 
 
 
 
 
 
 Stay organized with collections
 
 
 
 Save and categorize content based on your preferences.
 
  
 
 - 2.27.0 (latest)
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 1.36.0
- 1.35.0
- 1.34.0
- 1.33.0
- 1.32.0
- 1.31.0
- 1.30.0
- 1.29.0
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
SeriesGroupBy(
 block: bigframes.core.blocks.Block,
 value_column: str,
 by_col_ids: typing.Sequence[str],
 value_name: typing.Hashable = None,
 dropna=True,
)Class for grouping and aggregating relational data.
Methods
agg
agg(
 func=None,
) -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]Aggregate using one or more operations.
aggregate
aggregate(
 func=None,
) -> typing.Union[bigframes.dataframe.DataFrame, bigframes.series.Series]API documentation for aggregate method.
all
all() -> bigframes.series.SeriesReturn True if all values in the group are true, else False.
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | DataFrame or Series of boolean values, where a value is True if all elements are True within its respective group, False otherwise. | 
any
any() -> bigframes.series.SeriesReturn True if any value in the group is true, else False.
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | DataFrame or Series of boolean values, where a value is True if any element is True within its respective group, False otherwise. | 
count
count() -> bigframes.series.SeriesCompute count of group, excluding missing values.
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | Count of values within each group. | 
cumcount
cumcount(*args, **kwargs) -> bigframes.series.SeriesNumber each item in each group from 0 to the length of that group - 1.
| Parameter | |
|---|---|
| Name | Description | 
| ascending | bool, default TrueIf False, number in reverse, from length of group - 1 to 0. | 
| Returns | |
|---|---|
| Type | Description | 
| Series | Sequence number of each element within each group. | 
cummax
cummax(*args, **kwargs) -> bigframes.series.SeriesCumulative max for each group.
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | Cumulative max for each group. | 
cummin
cummin(*args, **kwargs) -> bigframes.series.SeriesCumulative min for each group.
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | Cumulative min for each group. | 
cumprod
cumprod(*args, **kwargs) -> bigframes.series.SeriesCumulative product for each group.
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | Cumulative product for each group. | 
cumsum
cumsum(*args, **kwargs) -> bigframes.series.SeriesCumulative sum for each group.
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | Cumulative sum for each group. | 
diff
diff(periods=1) -> bigframes.series.SeriesFirst discrete difference of element. Calculates the difference of each element compared with another element in the group (default is element in previous row).
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | First differences. | 
expanding
expanding(min_periods: int = 1) -> bigframes.core.window.WindowProvides expanding functionality.
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | A expanding grouper, providing expanding functionality per group. | 
kurt
kurt(*args, **kwargs) -> bigframes.series.SeriesReturn unbiased kurtosis over requested axis.
Kurtosis obtained using Fisher's definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.
| Parameter | |
|---|---|
| Name | Description | 
| numeric_only | bool, default FalseInclude only  | 
kurtosis
kurtosis(*args, **kwargs) -> bigframes.series.SeriesAPI documentation for kurtosis method.
max
max(*args) -> bigframes.series.SeriesCompute max of group values.
| Parameters | |
|---|---|
| Name | Description | 
| numeric_only | bool, default FalseInclude only float, int, boolean columns. | 
| min_count | int, default 0The required number of valid values to perform the operation. If fewer than  | 
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | Computed max of values within each group. | 
mean
mean(*args) -> bigframes.series.SeriesCompute mean of groups, excluding missing values.
| Parameter | |
|---|---|
| Name | Description | 
| numeric_only | bool, default FalseInclude only float, int, boolean columns. | 
| Returns | |
|---|---|
| Type | Description | 
| pandas.Series or pandas.DataFrame | Mean of groups. | 
median
median(*args, **kwargs) -> bigframes.series.SeriesCompute median of groups, excluding missing values.
| Parameters | |
|---|---|
| Name | Description | 
| numeric_only | bool, default FalseInclude only float, int, boolean columns. | 
| exact | bool, default FalseCalculate the exact median instead of an approximation. Note:  | 
| Returns | |
|---|---|
| Type | Description | 
| pandas.Series or pandas.DataFrame | Median of groups. | 
min
min(*args) -> bigframes.series.SeriesCompute min of group values.
| Parameters | |
|---|---|
| Name | Description | 
| numeric_only | bool, default FalseInclude only float, int, boolean columns. | 
| min_count | int, default 0The required number of valid values to perform the operation. If fewer than  | 
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | Computed min of values within each group. | 
nunique
nunique() -> bigframes.series.SeriesReturn number of unique elements in the group.
| Returns | |
|---|---|
| Type | Description | 
| Series | Number of unique values within each group. | 
prod
prod(*args) -> bigframes.series.SeriesCompute prod of group values.
| Parameters | |
|---|---|
| Name | Description | 
| numeric_only | bool, default FalseInclude only float, int, boolean columns. | 
| min_count | int, default 0The required number of valid values to perform the operation. If fewer than  | 
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | Computed prod of values within each group. | 
rolling
rolling(window: int, min_periods=None) -> bigframes.core.window.WindowReturns a rolling grouper, providing rolling functionality per group.
| Parameter | |
|---|---|
| Name | Description | 
| min_periods | int, default NoneMinimum number of observations in window required to have a value; otherwise, result is  | 
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | Return a new grouper with our rolling appended. | 
shift
shift(periods=1) -> bigframes.series.SeriesShift index by desired number of periods.
skew
skew(*args, **kwargs) -> bigframes.series.SeriesReturn unbiased skew within groups.
Normalized by N-1.
| Parameter | |
|---|---|
| Name | Description | 
| numeric_only | bool, default FalseInclude only  | 
std
std(*args, **kwargs) -> bigframes.series.SeriesCompute standard deviation of groups, excluding missing values.
For multiple groupings, the result index will be a MultiIndex.
| Parameter | |
|---|---|
| Name | Description | 
| numeric_only | bool, default FalseInclude only  | 
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | Standard deviation of values within each group. | 
sum
sum(*args) -> bigframes.series.SeriesCompute sum of group values.
| Parameters | |
|---|---|
| Name | Description | 
| numeric_only | bool, default FalseInclude only float, int, boolean columns. | 
| min_count | int, default 0The required number of valid values to perform the operation. If fewer than  | 
| Returns | |
|---|---|
| Type | Description | 
| Series or DataFrame | Computed sum of values within each group. | 
var
var(*args, **kwargs) -> bigframes.series.SeriesCompute variance of groups, excluding missing values.
For multiple groupings, the result index will be a MultiIndex.
| Parameter | |
|---|---|
| Name | Description | 
| numeric_only | bool, default FalseInclude only  |