Class AutoMlClient (2.3.0)
 
 
 
 
 
 
 Stay organized with collections
 
 
 
 Save and categorize content based on your preferences.
 
  
 
 AutoMlClient(*, credentials: Optional[google.auth.credentials.Credentials] = None, transport: Optional[Union[str, google.cloud.automl_v1.services.auto_ml.transports.base.AutoMlTransport]] = None, client_options: Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)AutoML Server API.
The resource names are assigned by the server. The server never reuses names that it has created after the resources with those names are deleted.
An ID of a resource is the last element of the item's resource name.
For
projects/{project_id}/locations/{location_id}/datasets/{dataset_id},
then the id for the item is {dataset_id}.
Currently the only supported location_id is "us-central1".
On any input that is documented to expect a string parameter in snake_case or kebab-case, either of those cases is accepted.
Properties
transport
Return the transport used by the client instance.
AutoMlTransport
 The transport used by the client instance.
 Methods
AutoMlClient
AutoMlClient(*, credentials: Optional[google.auth.credentials.Credentials] = None, transport: Optional[Union[str, google.cloud.automl_v1.services.auto_ml.transports.base.AutoMlTransport]] = None, client_options: Optional[google.api_core.client_options.ClientOptions] = None, client_info: google.api_core.gapic_v1.client_info.ClientInfo = <google.api_core.gapic_v1.client_info.ClientInfo object>)Instantiate the auto ml client.
credentials
 
 Optional[google.auth.credentials.Credentials]
 The authorization credentials to attach to requests. These credentials identify the application to the service; if none are specified, the client will attempt to ascertain the credentials from the environment.
transport
 
 Union[str, AutoMlTransport]
 The transport to use. If set to None, a transport is chosen automatically.
client_options
 
 google.api_core.client_options.ClientOptions
 Custom options for the client. It won't take effect if a transport instance is provided. (1) The api_endpoint property can be used to override the default endpoint provided by the client. GOOGLE_API_USE_MTLS_ENDPOINT environment variable can also be used to override the endpoint: "always" (always use the default mTLS endpoint), "never" (always use the default regular endpoint) and "auto" (auto switch to the default mTLS endpoint if client certificate is present, this is the default value). However, the api_endpoint property takes precedence if provided. (2) If GOOGLE_API_USE_CLIENT_CERTIFICATE environment variable is "true", then the client_cert_source property can be used to provide client certificate for mutual TLS transport. If not provided, the default SSL client certificate will be used if present. If GOOGLE_API_USE_CLIENT_CERTIFICATE is "false" or not set, no client certificate will be used.
client_info
 
 google.api_core.gapic_v1.client_info.ClientInfo
 The client info used to send a user-agent string along with API requests. If None, then default info will be used. Generally, you only need to set this if you're developing your own client library.
google.auth.exceptions.MutualTLSChannelError
 If mutual TLS transport creation failed for any reason.
 annotation_spec_path
annotation_spec_path(
 project: str, location: str, dataset: str, annotation_spec: str
)Return a fully-qualified annotation_spec string.
common_billing_account_path
common_billing_account_path(billing_account: str)Return a fully-qualified billing_account string.
common_folder_path
common_folder_path(folder: str)Return a fully-qualified folder string.
common_location_path
common_location_path(project: str, location: str)Return a fully-qualified location string.
common_organization_path
common_organization_path(organization: str)Return a fully-qualified organization string.
common_project_path
common_project_path(project: str)Return a fully-qualified project string.
create_dataset
create_dataset(request: Optional[google.cloud.automl_v1.types.service.CreateDatasetRequest] = None, *, parent: Optional[str] = None, dataset: Optional[google.cloud.automl_v1.types.dataset.Dataset] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Creates a dataset.
request
 
 google.cloud.automl_v1.types.CreateDatasetRequest 
 The request object. Request message for AutoMl.CreateDataset.
parent
 
 str
 Required. The resource name of the project to create the dataset for. This corresponds to the parent field on the request instance; if request is provided, this should not be set.
dataset
 
 google.cloud.automl_v1.types.Dataset 
 Required. The dataset to create. This corresponds to the dataset field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.api_core.operation.Operation
 An object representing a long-running operation. The result type for the operation will be Dataset A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
 create_model
create_model(request: Optional[google.cloud.automl_v1.types.service.CreateModelRequest] = None, *, parent: Optional[str] = None, model: Optional[google.cloud.automl_v1.types.model.Model] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Creates a model. Returns a Model in the
response][google.longrunning.Operation.response] field when it
completes. When you create a model, several model evaluations
are created for it: a global evaluation, and one evaluation for
each annotation spec.
request
 
 google.cloud.automl_v1.types.CreateModelRequest 
 The request object. Request message for AutoMl.CreateModel.
parent
 
 str
 Required. Resource name of the parent project where the model is being created. This corresponds to the parent field on the request instance; if request is provided, this should not be set.
model
 
 google.cloud.automl_v1.types.Model 
 Required. The model to create. This corresponds to the model field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.api_core.operation.Operation
 An object representing a long-running operation. The result type for the operation will be Model API proto representing a trained machine learning model.
 dataset_path
dataset_path(project: str, location: str, dataset: str)Return a fully-qualified dataset string.
delete_dataset
delete_dataset(request: Optional[google.cloud.automl_v1.types.service.DeleteDatasetRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Deletes a dataset and all of its contents. Returns empty
response in the
response][google.longrunning.Operation.response] field when it
completes, and delete_details in the
metadata][google.longrunning.Operation.metadata] field.
request
 
 google.cloud.automl_v1.types.DeleteDatasetRequest 
 The request object. Request message for AutoMl.DeleteDataset.
name
 
 str
 Required. The resource name of the dataset to delete. This corresponds to the name field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.api_core.operation.Operation
 An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}.
 delete_model
delete_model(request: Optional[google.cloud.automl_v1.types.service.DeleteModelRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Deletes a model. Returns google.protobuf.Empty in the
response][google.longrunning.Operation.response] field when it
completes, and delete_details in the
metadata][google.longrunning.Operation.metadata] field.
request
 
 google.cloud.automl_v1.types.DeleteModelRequest 
 The request object. Request message for AutoMl.DeleteModel.
name
 
 str
 Required. Resource name of the model being deleted. This corresponds to the name field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.api_core.operation.Operation
 An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}.
 deploy_model
deploy_model(request: Optional[google.cloud.automl_v1.types.service.DeployModelRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Deploys a model. If a model is already deployed, deploying it with the same parameters has no effect. Deploying with different parametrs (as e.g. changing
xref_node_number) will reset the deployment state without pausing the model's availability.
Only applicable for Text Classification, Image Object Detection , Tables, and Image Segmentation; all other domains manage deployment automatically.
Returns an empty response in the
response][google.longrunning.Operation.response] field when it
completes.
request
 
 google.cloud.automl_v1.types.DeployModelRequest 
 The request object. Request message for AutoMl.DeployModel.
name
 
 str
 Required. Resource name of the model to deploy. This corresponds to the name field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.api_core.operation.Operation
 An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}.
 export_data
export_data(request: Optional[google.cloud.automl_v1.types.service.ExportDataRequest] = None, *, name: Optional[str] = None, output_config: Optional[google.cloud.automl_v1.types.io.OutputConfig] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Exports dataset's data to the provided output location. Returns
an empty response in the
response][google.longrunning.Operation.response] field when it
completes.
request
 
 google.cloud.automl_v1.types.ExportDataRequest 
 The request object. Request message for AutoMl.ExportData.
name
 
 str
 Required. The resource name of the dataset. This corresponds to the name field on the request instance; if request is provided, this should not be set.
output_config
 
 google.cloud.automl_v1.types.OutputConfig 
 Required. The desired output location. This corresponds to the output_config field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.api_core.operation.Operation
 An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}.
 export_model
export_model(request: Optional[google.cloud.automl_v1.types.service.ExportModelRequest] = None, *, name: Optional[str] = None, output_config: Optional[google.cloud.automl_v1.types.io.ModelExportOutputConfig] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Exports a trained, "export-able", model to a user specified Google Cloud Storage location. A model is considered export-able if and only if it has an export format defined for it in xref_ModelExportOutputConfig.
Returns an empty response in the
response][google.longrunning.Operation.response] field when it
completes.
request
 
 google.cloud.automl_v1.types.ExportModelRequest 
 The request object. Request message for AutoMl.ExportModel. Models need to be enabled for exporting, otherwise an error code will be returned.
name
 
 str
 Required. The resource name of the model to export. This corresponds to the name field on the request instance; if request is provided, this should not be set.
output_config
 
 google.cloud.automl_v1.types.ModelExportOutputConfig 
 Required. The desired output location and configuration. This corresponds to the output_config field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.api_core.operation.Operation
 An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}.
 from_service_account_file
from_service_account_file(filename: str, *args, **kwargs)Creates an instance of this client using the provided credentials file.
filename
 
 str
 The path to the service account private key json file.
AutoMlClient
 The constructed client.
 from_service_account_info
from_service_account_info(info: dict, *args, **kwargs)Creates an instance of this client using the provided credentials info.
info
 
 dict
 The service account private key info.
AutoMlClient
 The constructed client.
 from_service_account_json
from_service_account_json(filename: str, *args, **kwargs)Creates an instance of this client using the provided credentials file.
filename
 
 str
 The path to the service account private key json file.
AutoMlClient
 The constructed client.
 get_annotation_spec
get_annotation_spec(request: Optional[google.cloud.automl_v1.types.service.GetAnnotationSpecRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Gets an annotation spec.
request
 
 google.cloud.automl_v1.types.GetAnnotationSpecRequest 
 The request object. Request message for AutoMl.GetAnnotationSpec.
name
 
 str
 Required. The resource name of the annotation spec to retrieve. This corresponds to the name field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.cloud.automl_v1.types.AnnotationSpec 
 A definition of an annotation spec.
 get_dataset
get_dataset(request: Optional[google.cloud.automl_v1.types.service.GetDatasetRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Gets a dataset.
request
 
 google.cloud.automl_v1.types.GetDatasetRequest 
 The request object. Request message for AutoMl.GetDataset.
name
 
 str
 Required. The resource name of the dataset to retrieve. This corresponds to the name field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.cloud.automl_v1.types.Dataset 
 A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
 get_model
get_model(request: Optional[google.cloud.automl_v1.types.service.GetModelRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Gets a model.
request
 
 google.cloud.automl_v1.types.GetModelRequest 
 The request object. Request message for AutoMl.GetModel.
name
 
 str
 Required. Resource name of the model. This corresponds to the name field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.cloud.automl_v1.types.Model 
 API proto representing a trained machine learning model.
 get_model_evaluation
get_model_evaluation(request: Optional[google.cloud.automl_v1.types.service.GetModelEvaluationRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Gets a model evaluation.
request
 
 google.cloud.automl_v1.types.GetModelEvaluationRequest 
 The request object. Request message for AutoMl.GetModelEvaluation.
name
 
 str
 Required. Resource name for the model evaluation. This corresponds to the name field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.cloud.automl_v1.types.ModelEvaluation 
 Evaluation results of a model.
 import_data
import_data(request: Optional[google.cloud.automl_v1.types.service.ImportDataRequest] = None, *, name: Optional[str] = None, input_config: Optional[google.cloud.automl_v1.types.io.InputConfig] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Imports data into a dataset. For Tables this method can only be called on an empty Dataset.
For Tables:
- A
xref_schema_inference_version
parameter must be explicitly set. Returns an empty response
in the response][google.longrunning.Operation.response]field when it completes.
request
 
 google.cloud.automl_v1.types.ImportDataRequest 
 The request object. Request message for AutoMl.ImportData.
name
 
 str
 Required. Dataset name. Dataset must already exist. All imported annotations and examples will be added. This corresponds to the name field on the request instance; if request is provided, this should not be set.
input_config
 
 google.cloud.automl_v1.types.InputConfig 
 Required. The desired input location and its domain specific semantics, if any. This corresponds to the input_config field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.api_core.operation.Operation
 An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}.
 list_datasets
list_datasets(request: Optional[google.cloud.automl_v1.types.service.ListDatasetsRequest] = None, *, parent: Optional[str] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Lists datasets in a project.
request
 
 google.cloud.automl_v1.types.ListDatasetsRequest 
 The request object. Request message for AutoMl.ListDatasets.
parent
 
 str
 Required. The resource name of the project from which to list datasets. This corresponds to the parent field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.cloud.automl_v1.services.auto_ml.pagers.ListDatasetsPager 
 Response message for AutoMl.ListDatasets. Iterating over this object will yield results and resolve additional pages automatically.
 list_model_evaluations
list_model_evaluations(request: Optional[google.cloud.automl_v1.types.service.ListModelEvaluationsRequest] = None, *, parent: Optional[str] = None, filter: Optional[str] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Lists model evaluations.
request
 
 google.cloud.automl_v1.types.ListModelEvaluationsRequest 
 The request object. Request message for AutoMl.ListModelEvaluations.
parent
 
 str
 Required. Resource name of the model to list the model evaluations for. If modelId is set as "-", this will list model evaluations from across all models of the parent location. This corresponds to the parent field on the request instance; if request is provided, this should not be set.
filter
 
 str
 Required. An expression for filtering the results of the request. - annotation_spec_id - for =, != or existence. See example below for the last. Some examples of using the filter are: - annotation_spec_id!=4 --> The model evaluation was done for annotation spec with ID different than 4. - NOT annotation_spec_id:* --> The model evaluation was done for aggregate of all annotation specs. This corresponds to the filter field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.cloud.automl_v1.services.auto_ml.pagers.ListModelEvaluationsPager 
 Response message for AutoMl.ListModelEvaluations. Iterating over this object will yield results and resolve additional pages automatically.
 list_models
list_models(request: Optional[google.cloud.automl_v1.types.service.ListModelsRequest] = None, *, parent: Optional[str] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Lists models.
request
 
 google.cloud.automl_v1.types.ListModelsRequest 
 The request object. Request message for AutoMl.ListModels.
parent
 
 str
 Required. Resource name of the project, from which to list the models. This corresponds to the parent field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.cloud.automl_v1.services.auto_ml.pagers.ListModelsPager 
 Response message for AutoMl.ListModels. Iterating over this object will yield results and resolve additional pages automatically.
 model_evaluation_path
model_evaluation_path(
 project: str, location: str, model: str, model_evaluation: str
)Return a fully-qualified model_evaluation string.
model_path
model_path(project: str, location: str, model: str)Return a fully-qualified model string.
parse_annotation_spec_path
parse_annotation_spec_path(path: str)Parse a annotation_spec path into its component segments.
parse_common_billing_account_path
parse_common_billing_account_path(path: str)Parse a billing_account path into its component segments.
parse_common_folder_path
parse_common_folder_path(path: str)Parse a folder path into its component segments.
parse_common_location_path
parse_common_location_path(path: str)Parse a location path into its component segments.
parse_common_organization_path
parse_common_organization_path(path: str)Parse a organization path into its component segments.
parse_common_project_path
parse_common_project_path(path: str)Parse a project path into its component segments.
parse_dataset_path
parse_dataset_path(path: str)Parse a dataset path into its component segments.
parse_model_evaluation_path
parse_model_evaluation_path(path: str)Parse a model_evaluation path into its component segments.
parse_model_path
parse_model_path(path: str)Parse a model path into its component segments.
undeploy_model
undeploy_model(request: Optional[google.cloud.automl_v1.types.service.UndeployModelRequest] = None, *, name: Optional[str] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Undeploys a model. If the model is not deployed this method has no effect.
Only applicable for Text Classification, Image Object Detection and Tables; all other domains manage deployment automatically.
Returns an empty response in the
response][google.longrunning.Operation.response] field when it
completes.
request
 
 google.cloud.automl_v1.types.UndeployModelRequest 
 The request object. Request message for AutoMl.UndeployModel.
name
 
 str
 Required. Resource name of the model to undeploy. This corresponds to the name field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.api_core.operation.Operation
 An object representing a long-running operation. The result type for the operation will be google.protobuf.empty_pb2.Empty A generic empty message that you can re-use to avoid defining duplicated empty messages in your APIs. A typical example is to use it as the request or the response type of an API method. For instance: service Foo { rpc Bar(google.protobuf.Empty) returns (google.protobuf.Empty); } The JSON representation for Empty is empty JSON object {}.
 update_dataset
update_dataset(request: Optional[google.cloud.automl_v1.types.service.UpdateDatasetRequest] = None, *, dataset: Optional[google.cloud.automl_v1.types.dataset.Dataset] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Updates a dataset.
request
 
 google.cloud.automl_v1.types.UpdateDatasetRequest 
 The request object. Request message for AutoMl.UpdateDataset
dataset
 
 google.cloud.automl_v1.types.Dataset 
 Required. The dataset which replaces the resource on the server. This corresponds to the dataset field on the request instance; if request is provided, this should not be set.
update_mask
 
 google.protobuf.field_mask_pb2.FieldMask
 Required. The update mask applies to the resource. This corresponds to the update_mask field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.cloud.automl_v1.types.Dataset 
 A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
 update_model
update_model(request: Optional[google.cloud.automl_v1.types.service.UpdateModelRequest] = None, *, model: Optional[google.cloud.automl_v1.types.model.Model] = None, update_mask: Optional[google.protobuf.field_mask_pb2.FieldMask] = None, retry: google.api_core.retry.Retry = <_MethodDefault._DEFAULT_VALUE: <object object>>, timeout: Optional[float] = None, metadata: Sequence[Tuple[str, str]] = ())Updates a model.
request
 
 google.cloud.automl_v1.types.UpdateModelRequest 
 The request object. Request message for AutoMl.UpdateModel
model
 
 google.cloud.automl_v1.types.Model 
 Required. The model which replaces the resource on the server. This corresponds to the model field on the request instance; if request is provided, this should not be set.
update_mask
 
 google.protobuf.field_mask_pb2.FieldMask
 Required. The update mask applies to the resource. This corresponds to the update_mask field on the request instance; if request is provided, this should not be set.
retry
 
 google.api_core.retry.Retry
 Designation of what errors, if any, should be retried.
timeout
 
 float
 The timeout for this request.
metadata
 
 Sequence[Tuple[str, str]]
 Strings which should be sent along with the request as metadata.
google.cloud.automl_v1.types.Model 
 API proto representing a trained machine learning model.