Class AutoMlClient (0.8.0)
 
 
 
 
 
 
 Stay organized with collections
 
 
 
 Save and categorize content based on your preferences.
 
  
 
 AutoMlClient(
 transport=None,
 channel=None,
 credentials=None,
 client_config=None,
 client_info=None,
 client_options=None,
)AutoML Server API.
The resource names are assigned by the server. The server never reuses names that it has created after the resources with those names are deleted.
An ID of a resource is the last element of the item's resource name. For
projects/{project_id}/locations/{location_id}/datasets/{dataset_id},
then the id for the item is {dataset_id}.
Currently the only supported location_id is "us-central1".
On any input that is documented to expect a string parameter in snake_case or kebab-case, either of those cases is accepted.
Methods
AutoMlClient
AutoMlClient(
 transport=None,
 channel=None,
 credentials=None,
 client_config=None,
 client_info=None,
 client_options=None,
)Constructor.
channel
 
 grpc.Channel
 DEPRECATED. A Channel instance through which to make calls. This argument is mutually exclusive with credentials; providing both will raise an exception.
credentials
 
 google.auth.credentials.Credentials
 The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. This argument is mutually exclusive with providing a transport instance to transport; doing so will raise an exception.
client_config
 
 dict
 DEPRECATED. A dictionary of call options for each method. If not specified, the default configuration is used.
client_info
 
 google.api_core.gapic_v1.client_info.ClientInfo
 The client info used to send a user-agent string along with API requests. If None, then default info will be used. Generally, you only need to set this if you're developing your own client library.
client_options
 
 Union[dict, google.api_core.client_options.ClientOptions]
 Client options used to set user options on the client. API Endpoint should be set through client_options.
annotation_spec_path
annotation_spec_path(project, location, dataset, annotation_spec)Return a fully-qualified annotation_spec string.
column_spec_path
column_spec_path(project, location, dataset, table_spec, column_spec)Return a fully-qualified column_spec string.
create_dataset
create_dataset(parent, dataset, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Creates a dataset.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
parent = client.location_path('[PROJECT]', '[LOCATION]')
TODO: Initialize
dataset:dataset = {}
response = client.create_dataset(parent, dataset)
parent
 
 str
 The resource name of the project to create the dataset for.
dataset
 
 Union[dict, Dataset]
 The dataset to create. If a dict is provided, it must be of the same form as the protobuf message Dataset
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 create_model
create_model(parent, model, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Creates a model. Returns a Model in the response field when it
completes. When you create a model, several model evaluations are
created for it: a global evaluation, and one evaluation for each
annotation spec.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
parent = client.location_path('[PROJECT]', '[LOCATION]')
TODO: Initialize
model:model = {}
response = client.create_model(parent, model)
def callback(operation_future): ... # Handle result. ... result = operation_future.result()
response.add_done_callback(callback)
Handle metadata.
metadata = response.metadata()
parent
 
 str
 Resource name of the parent project where the model is being created.
model
 
 Union[dict, Model]
 The model to create. If a dict is provided, it must be of the same form as the protobuf message Model
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 dataset_path
dataset_path(project, location, dataset)Return a fully-qualified dataset string.
delete_dataset
delete_dataset(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Deletes a dataset and all of its contents. Returns empty response in the
response field when it completes, and delete_details in the
metadata field.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.dataset_path('[PROJECT]', '[LOCATION]', '[DATASET]')
response = client.delete_dataset(name)
def callback(operation_future): ... # Handle result. ... result = operation_future.result()
response.add_done_callback(callback)
Handle metadata.
metadata = response.metadata()
name
 
 str
 The resource name of the dataset to delete.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 delete_model
delete_model(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Deletes a model. Returns google.protobuf.Empty in the response
field when it completes, and delete_details in the metadata
field.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')
response = client.delete_model(name)
def callback(operation_future): ... # Handle result. ... result = operation_future.result()
response.add_done_callback(callback)
Handle metadata.
metadata = response.metadata()
name
 
 str
 Resource name of the model being deleted.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 deploy_model
deploy_model(name, image_object_detection_model_deployment_metadata=None, image_classification_model_deployment_metadata=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Deploys a model. If a model is already deployed, deploying it with the same parameters has no effect. Deploying with different parametrs (as e.g. changing
node_number) will reset the deployment state without pausing the
model's availability.
Only applicable for Text Classification, Image Object Detection and Tables; all other domains manage deployment automatically.
Returns an empty response in the response field when it completes.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')
response = client.deploy_model(name)
def callback(operation_future): ... # Handle result. ... result = operation_future.result()
response.add_done_callback(callback)
Handle metadata.
metadata = response.metadata()
name
 
 str
 Resource name of the model to deploy.
image_object_detection_model_deployment_metadata
 
 Union[dict, ImageObjectDetectionModelDeploymentMetadata]
 Model deployment metadata specific to Image Object Detection. If a dict is provided, it must be of the same form as the protobuf message ImageObjectDetectionModelDeploymentMetadata
image_classification_model_deployment_metadata
 
 Union[dict, ImageClassificationModelDeploymentMetadata]
 Model deployment metadata specific to Image Classification. If a dict is provided, it must be of the same form as the protobuf message ImageClassificationModelDeploymentMetadata
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 export_data
export_data(name, output_config, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Exports dataset's data to the provided output location. Returns an empty
response in the response field when it completes.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.dataset_path('[PROJECT]', '[LOCATION]', '[DATASET]')
TODO: Initialize
output_config:output_config = {}
response = client.export_data(name, output_config)
def callback(operation_future): ... # Handle result. ... result = operation_future.result()
response.add_done_callback(callback)
Handle metadata.
metadata = response.metadata()
name
 
 str
 Required. The resource name of the dataset.
output_config
 
 Union[dict, OutputConfig]
 Required. The desired output location. If a dict is provided, it must be of the same form as the protobuf message OutputConfig
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 export_evaluated_examples
export_evaluated_examples(name, output_config, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Exports examples on which the model was evaluated (i.e. which were in the TEST set of the dataset the model was created from), together with their ground truth annotations and the annotations created (predicted) by the model. The examples, ground truth and predictions are exported in the state they were at the moment the model was evaluated.
This export is available only for 30 days since the model evaluation is created.
Currently only available for Tables.
Returns an empty response in the response field when it completes.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')
TODO: Initialize
output_config:output_config = {}
response = client.export_evaluated_examples(name, output_config)
def callback(operation_future): ... # Handle result. ... result = operation_future.result()
response.add_done_callback(callback)
Handle metadata.
metadata = response.metadata()
name
 
 str
 Required. The resource name of the model whose evaluated examples are to be exported.
output_config
 
 Union[dict, ExportEvaluatedExamplesOutputConfig]
 Required. The desired output location and configuration. If a dict is provided, it must be of the same form as the protobuf message ExportEvaluatedExamplesOutputConfig
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 export_model
export_model(name, output_config, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Exports a trained, "export-able", model to a user specified Google Cloud Storage location. A model is considered export-able if and only if it has an export format defined for it in
ModelExportOutputConfig.
Returns an empty response in the response field when it completes.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')
TODO: Initialize
output_config:output_config = {}
response = client.export_model(name, output_config)
def callback(operation_future): ... # Handle result. ... result = operation_future.result()
response.add_done_callback(callback)
Handle metadata.
metadata = response.metadata()
name
 
 str
 Required. The resource name of the model to export.
output_config
 
 Union[dict, ModelExportOutputConfig]
 Required. The desired output location and configuration. If a dict is provided, it must be of the same form as the protobuf message ModelExportOutputConfig
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 from_service_account_file
from_service_account_file(filename, *args, **kwargs)Creates an instance of this client using the provided credentials file.
filename
 
 str
 The path to the service account private key json file.
AutoMlClient
 The constructed client.
 from_service_account_json
from_service_account_json(filename, *args, **kwargs)Creates an instance of this client using the provided credentials file.
filename
 
 str
 The path to the service account private key json file.
AutoMlClient
 The constructed client.
 get_annotation_spec
get_annotation_spec(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Gets an annotation spec.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.annotation_spec_path('[PROJECT]', '[LOCATION]', '[DATASET]', '[ANNOTATION_SPEC]')
response = client.get_annotation_spec(name)
name
 
 str
 The resource name of the annotation spec to retrieve.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 get_column_spec
get_column_spec(name, field_mask=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Gets a column spec.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.column_spec_path('[PROJECT]', '[LOCATION]', '[DATASET]', '[TABLE_SPEC]', '[COLUMN_SPEC]')
response = client.get_column_spec(name)
name
 
 str
 The resource name of the column spec to retrieve.
field_mask
 
 Union[dict, FieldMask]
 Mask specifying which fields to read. If a dict is provided, it must be of the same form as the protobuf message FieldMask
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 get_dataset
get_dataset(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Gets a dataset.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.dataset_path('[PROJECT]', '[LOCATION]', '[DATASET]')
response = client.get_dataset(name)
name
 
 str
 The resource name of the dataset to retrieve.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 get_model
get_model(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Gets a model.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')
response = client.get_model(name)
name
 
 str
 Resource name of the model.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 get_model_evaluation
get_model_evaluation(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Gets a model evaluation.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.model_evaluation_path('[PROJECT]', '[LOCATION]', '[MODEL]', '[MODEL_EVALUATION]')
response = client.get_model_evaluation(name)
name
 
 str
 Resource name for the model evaluation.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 get_table_spec
get_table_spec(name, field_mask=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Gets a table spec.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.table_spec_path('[PROJECT]', '[LOCATION]', '[DATASET]', '[TABLE_SPEC]')
response = client.get_table_spec(name)
name
 
 str
 The resource name of the table spec to retrieve.
field_mask
 
 Union[dict, FieldMask]
 Mask specifying which fields to read. If a dict is provided, it must be of the same form as the protobuf message FieldMask
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 import_data
import_data(name, input_config, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Imports data into a dataset. For Tables this method can only be called on an empty Dataset.
For Tables:
- A schema_inference_versionparameter must be explicitly set. Returns an empty response in theresponsefield when it completes.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.dataset_path('[PROJECT]', '[LOCATION]', '[DATASET]')
TODO: Initialize
input_config:input_config = {}
response = client.import_data(name, input_config)
def callback(operation_future): ... # Handle result. ... result = operation_future.result()
response.add_done_callback(callback)
Handle metadata.
metadata = response.metadata()
name
 
 str
 Required. Dataset name. Dataset must already exist. All imported annotations and examples will be added.
input_config
 
 Union[dict, InputConfig]
 Required. The desired input location and its domain specific semantics, if any. If a dict is provided, it must be of the same form as the protobuf message InputConfig
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 list_column_specs
list_column_specs(parent, field_mask=None, filter_=None, page_size=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Lists column specs in a table spec.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
parent = client.table_spec_path('[PROJECT]', '[LOCATION]', '[DATASET]', '[TABLE_SPEC]')
Iterate over all results
for element in client.list_column_specs(parent): ... # process element ... pass
Alternatively:
Iterate over results one page at a time
for page in client.list_column_specs(parent).pages: ... for element in page: ... # process element ... pass
parent
 
 str
 The resource name of the table spec to list column specs from.
field_mask
 
 Union[dict, FieldMask]
 Mask specifying which fields to read. If a dict is provided, it must be of the same form as the protobuf message FieldMask
filter_
 
 str
 Filter expression, see go/filtering.
page_size
 
 int
 The maximum number of resources contained in the underlying API response. If page streaming is performed per- resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 list_datasets
list_datasets(parent, filter_=None, page_size=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Lists datasets in a project.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
parent = client.location_path('[PROJECT]', '[LOCATION]')
Iterate over all results
for element in client.list_datasets(parent): ... # process element ... pass
Alternatively:
Iterate over results one page at a time
for page in client.list_datasets(parent).pages: ... for element in page: ... # process element ... pass
parent
 
 str
 The resource name of the project from which to list datasets.
filter_
 
 str
 An expression for filtering the results of the request. - dataset_metadata - for existence of the case (e.g. image_classification_dataset_metadata:*). Some examples of using the filter are: - translation_dataset_metadata:* --> The dataset has translation_dataset_metadata.
page_size
 
 int
 The maximum number of resources contained in the underlying API response. If page streaming is performed per- resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 list_model_evaluations
list_model_evaluations(parent, filter_=None, page_size=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Lists model evaluations.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
parent = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')
Iterate over all results
for element in client.list_model_evaluations(parent): ... # process element ... pass
Alternatively:
Iterate over results one page at a time
for page in client.list_model_evaluations(parent).pages: ... for element in page: ... # process element ... pass
parent
 
 str
 Resource name of the model to list the model evaluations for. If modelId is set as "-", this will list model evaluations from across all models of the parent location.
filter_
 
 str
 An expression for filtering the results of the request. - annotation_spec_id - for =, != or existence. See example below for the last. Some examples of using the filter are: - annotation_spec_id!=4 --> The model evaluation was done for annotation spec with ID different than 4. - NOT annotation_spec_id:* --> The model evaluation was done for aggregate of all annotation specs.
page_size
 
 int
 The maximum number of resources contained in the underlying API response. If page streaming is performed per- resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 list_models
list_models(parent, filter_=None, page_size=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Lists models.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
parent = client.location_path('[PROJECT]', '[LOCATION]')
Iterate over all results
for element in client.list_models(parent): ... # process element ... pass
Alternatively:
Iterate over results one page at a time
for page in client.list_models(parent).pages: ... for element in page: ... # process element ... pass
parent
 
 str
 Resource name of the project, from which to list the models.
filter_
 
 str
 An expression for filtering the results of the request. - model_metadata - for existence of the case (e.g. video_classification_model_metadata:*). - dataset_id - for = or !=. Some examples of using the filter are: - image_classification_model_metadata:* --> The model has image_classification_model_metadata. - dataset_id=5 --> The model was created from a dataset with ID 5.
page_size
 
 int
 The maximum number of resources contained in the underlying API response. If page streaming is performed per- resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 list_table_specs
list_table_specs(parent, field_mask=None, filter_=None, page_size=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Lists table specs in a dataset.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
parent = client.dataset_path('[PROJECT]', '[LOCATION]', '[DATASET]')
Iterate over all results
for element in client.list_table_specs(parent): ... # process element ... pass
Alternatively:
Iterate over results one page at a time
for page in client.list_table_specs(parent).pages: ... for element in page: ... # process element ... pass
parent
 
 str
 The resource name of the dataset to list table specs from.
field_mask
 
 Union[dict, FieldMask]
 Mask specifying which fields to read. If a dict is provided, it must be of the same form as the protobuf message FieldMask
filter_
 
 str
 Filter expression, see go/filtering.
page_size
 
 int
 The maximum number of resources contained in the underlying API response. If page streaming is performed per- resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 location_path
location_path(project, location)Return a fully-qualified location string.
model_evaluation_path
model_evaluation_path(project, location, model, model_evaluation)Return a fully-qualified model_evaluation string.
model_path
model_path(project, location, model)Return a fully-qualified model string.
table_spec_path
table_spec_path(project, location, dataset, table_spec)Return a fully-qualified table_spec string.
undeploy_model
undeploy_model(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Undeploys a model. If the model is not deployed this method has no effect.
Only applicable for Text Classification, Image Object Detection and Tables; all other domains manage deployment automatically.
Returns an empty response in the response field when it completes.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
name = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')
response = client.undeploy_model(name)
def callback(operation_future): ... # Handle result. ... result = operation_future.result()
response.add_done_callback(callback)
Handle metadata.
metadata = response.metadata()
name
 
 str
 Resource name of the model to undeploy.
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 update_column_spec
update_column_spec(column_spec, update_mask=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Updates a column spec.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
TODO: Initialize
column_spec:column_spec = {}
response = client.update_column_spec(column_spec)
column_spec
 
 Union[dict, ColumnSpec]
 The column spec which replaces the resource on the server. If a dict is provided, it must be of the same form as the protobuf message ColumnSpec
update_mask
 
 Union[dict, FieldMask]
 The update mask applies to the resource. If a dict is provided, it must be of the same form as the protobuf message FieldMask
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 update_dataset
update_dataset(dataset, update_mask=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Updates a dataset.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
TODO: Initialize
dataset:dataset = {}
response = client.update_dataset(dataset)
dataset
 
 Union[dict, Dataset]
 The dataset which replaces the resource on the server. If a dict is provided, it must be of the same form as the protobuf message Dataset
update_mask
 
 Union[dict, FieldMask]
 The update mask applies to the resource. If a dict is provided, it must be of the same form as the protobuf message FieldMask
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.
 update_table_spec
update_table_spec(table_spec, update_mask=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)Updates a table spec.
.. rubric:: Example
from google.cloud import automl_v1beta1
client = automl_v1beta1.AutoMlClient()
TODO: Initialize
table_spec:table_spec = {}
response = client.update_table_spec(table_spec)
table_spec
 
 Union[dict, TableSpec]
 The table spec which replaces the resource on the server. If a dict is provided, it must be of the same form as the protobuf message TableSpec
update_mask
 
 Union[dict, FieldMask]
 The update mask applies to the resource. If a dict is provided, it must be of the same form as the protobuf message FieldMask
retry
 
 Optional[google.api_core.retry.Retry]
 A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.
timeout
 
 Optional[float]
 The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.
metadata
 
 Optional[Sequence[Tuple[str, str]]]
 Additional metadata that is provided to the method.
google.api_core.exceptions.GoogleAPICallError
 If the request failed for any reason.
 google.api_core.exceptions.RetryError
 If the request failed due to a retryable error and retry attempts failed.
 ValueError
 If the parameters are invalid.