JavaScript is disabled on your browser.
Skip navigation links

AWS SDK for Java 1.x API Reference - 1.12.795

We announced the upcoming end-of-support for AWS SDK for Java (v1). We recommend that you migrate to AWS SDK for Java v2. For dates, additional details, and information on how to migrate, please refer to the linked announcement.
com.amazonaws.services.sagemaker.model

Class InputConfig

    • Constructor Detail

      • InputConfig

        public InputConfig()
    • Method Detail

      • setS3Uri

        public void setS3Uri(String s3Uri)

        The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

        Parameters:
        s3Uri - The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
      • getS3Uri

        public String getS3Uri()

        The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

        Returns:
        The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
      • withS3Uri

        public InputConfig withS3Uri(String s3Uri)

        The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).

        Parameters:
        s3Uri - The S3 path where the model artifacts, which result from model training, are stored. This path must point to a single gzip compressed tar archive (.tar.gz suffix).
        Returns:
        Returns a reference to this object so that method calls can be chained together.
      • setDataInputConfig

        public void setDataInputConfig(String dataInputConfig)

        Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are Framework specific.

        • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input":[1,1024,1024,3]}

            • If using the CLI, {\"input\":[1,1024,1024,3]}

          • Examples for two inputs:

            • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}

            • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}

        • KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input_1":[1,3,224,224]}

            • If using the CLI, {\"input_1\":[1,3,224,224]}

          • Examples for two inputs:

            • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}

            • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}

        • MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"data":[1,3,1024,1024]}

            • If using the CLI, {\"data\":[1,3,1024,1024]}

          • Examples for two inputs:

            • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}

            • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}

        • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

          • Examples for one input in dictionary format:

            • If using the console, {"input0":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224]}

          • Example for one input in list format: [[1,3,224,224]]

          • Examples for two inputs in dictionary format:

            • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}

          • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

        • XGBOOST: input data name and shape are not needed.

        DataInputConfig supports the following parameters for CoreML TargetDevice (ML Model format):

        • shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:

          • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}

          • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}

        • default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}

        • type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.

        • bias: If the input type is an Image, you need to provide the bias vector.

        • scale: If the input type is an Image, you need to provide a scale factor.

        CoreML ClassifierConfig parameters can be specified using OutputConfig CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

        • Tensor type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}

        • Tensor type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]

        • Image type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        • Image type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

        • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:

          • "DataInputConfig": {"inputs": [1, 224, 224, 3]}

          • "CompilerOptions": {"signature_def_key": "serving_custom"}

        • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example:

          • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}

          • "CompilerOptions": {"output_names": ["output_tensor:0"]}

        Parameters:
        dataInputConfig - Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are Framework specific.

        • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input":[1,1024,1024,3]}

            • If using the CLI, {\"input\":[1,1024,1024,3]}

          • Examples for two inputs:

            • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}

            • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}

        • KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input_1":[1,3,224,224]}

            • If using the CLI, {\"input_1\":[1,3,224,224]}

          • Examples for two inputs:

            • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}

            • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}

        • MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"data":[1,3,1024,1024]}

            • If using the CLI, {\"data\":[1,3,1024,1024]}

          • Examples for two inputs:

            • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}

            • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}

        • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

          • Examples for one input in dictionary format:

            • If using the console, {"input0":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224]}

          • Example for one input in list format: [[1,3,224,224]]

          • Examples for two inputs in dictionary format:

            • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}

          • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

        • XGBOOST: input data name and shape are not needed.

        DataInputConfig supports the following parameters for CoreML TargetDevice (ML Model format):

        • shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:

          • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}

          • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}

        • default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}

        • type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.

        • bias: If the input type is an Image, you need to provide the bias vector.

        • scale: If the input type is an Image, you need to provide a scale factor.

        CoreML ClassifierConfig parameters can be specified using OutputConfig CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

        • Tensor type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}

        • Tensor type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]

        • Image type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        • Image type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

        • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:

          • "DataInputConfig": {"inputs": [1, 224, 224, 3]}

          • "CompilerOptions": {"signature_def_key": "serving_custom"}

        • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example:

          • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}

          • "CompilerOptions": {"output_names": ["output_tensor:0"]}

      • getDataInputConfig

        public String getDataInputConfig()

        Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are Framework specific.

        • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input":[1,1024,1024,3]}

            • If using the CLI, {\"input\":[1,1024,1024,3]}

          • Examples for two inputs:

            • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}

            • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}

        • KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input_1":[1,3,224,224]}

            • If using the CLI, {\"input_1\":[1,3,224,224]}

          • Examples for two inputs:

            • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}

            • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}

        • MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"data":[1,3,1024,1024]}

            • If using the CLI, {\"data\":[1,3,1024,1024]}

          • Examples for two inputs:

            • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}

            • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}

        • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

          • Examples for one input in dictionary format:

            • If using the console, {"input0":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224]}

          • Example for one input in list format: [[1,3,224,224]]

          • Examples for two inputs in dictionary format:

            • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}

          • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

        • XGBOOST: input data name and shape are not needed.

        DataInputConfig supports the following parameters for CoreML TargetDevice (ML Model format):

        • shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:

          • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}

          • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}

        • default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}

        • type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.

        • bias: If the input type is an Image, you need to provide the bias vector.

        • scale: If the input type is an Image, you need to provide a scale factor.

        CoreML ClassifierConfig parameters can be specified using OutputConfig CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

        • Tensor type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}

        • Tensor type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]

        • Image type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        • Image type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

        • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:

          • "DataInputConfig": {"inputs": [1, 224, 224, 3]}

          • "CompilerOptions": {"signature_def_key": "serving_custom"}

        • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example:

          • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}

          • "CompilerOptions": {"output_names": ["output_tensor:0"]}

        Returns:
        Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are Framework specific.

        • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input":[1,1024,1024,3]}

            • If using the CLI, {\"input\":[1,1024,1024,3]}

          • Examples for two inputs:

            • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}

            • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}

        • KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input_1":[1,3,224,224]}

            • If using the CLI, {\"input_1\":[1,3,224,224]}

          • Examples for two inputs:

            • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}

            • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}

        • MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"data":[1,3,1024,1024]}

            • If using the CLI, {\"data\":[1,3,1024,1024]}

          • Examples for two inputs:

            • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}

            • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}

        • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

          • Examples for one input in dictionary format:

            • If using the console, {"input0":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224]}

          • Example for one input in list format: [[1,3,224,224]]

          • Examples for two inputs in dictionary format:

            • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}

          • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

        • XGBOOST: input data name and shape are not needed.

        DataInputConfig supports the following parameters for CoreML TargetDevice (ML Model format):

        • shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:

          • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}

          • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}

        • default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}

        • type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.

        • bias: If the input type is an Image, you need to provide the bias vector.

        • scale: If the input type is an Image, you need to provide a scale factor.

        CoreML ClassifierConfig parameters can be specified using OutputConfig CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

        • Tensor type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}

        • Tensor type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]

        • Image type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        • Image type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

        • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:

          • "DataInputConfig": {"inputs": [1, 224, 224, 3]}

          • "CompilerOptions": {"signature_def_key": "serving_custom"}

        • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example:

          • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}

          • "CompilerOptions": {"output_names": ["output_tensor:0"]}

      • withDataInputConfig

        public InputConfig withDataInputConfig(String dataInputConfig)

        Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are Framework specific.

        • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input":[1,1024,1024,3]}

            • If using the CLI, {\"input\":[1,1024,1024,3]}

          • Examples for two inputs:

            • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}

            • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}

        • KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input_1":[1,3,224,224]}

            • If using the CLI, {\"input_1\":[1,3,224,224]}

          • Examples for two inputs:

            • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}

            • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}

        • MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"data":[1,3,1024,1024]}

            • If using the CLI, {\"data\":[1,3,1024,1024]}

          • Examples for two inputs:

            • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}

            • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}

        • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

          • Examples for one input in dictionary format:

            • If using the console, {"input0":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224]}

          • Example for one input in list format: [[1,3,224,224]]

          • Examples for two inputs in dictionary format:

            • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}

          • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

        • XGBOOST: input data name and shape are not needed.

        DataInputConfig supports the following parameters for CoreML TargetDevice (ML Model format):

        • shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:

          • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}

          • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}

        • default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}

        • type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.

        • bias: If the input type is an Image, you need to provide the bias vector.

        • scale: If the input type is an Image, you need to provide a scale factor.

        CoreML ClassifierConfig parameters can be specified using OutputConfig CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

        • Tensor type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}

        • Tensor type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]

        • Image type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        • Image type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

        • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:

          • "DataInputConfig": {"inputs": [1, 224, 224, 3]}

          • "CompilerOptions": {"signature_def_key": "serving_custom"}

        • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example:

          • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}

          • "CompilerOptions": {"output_names": ["output_tensor:0"]}

        Parameters:
        dataInputConfig - Specifies the name and shape of the expected data inputs for your trained model with a JSON dictionary form. The data inputs are Framework specific.

        • TensorFlow: You must specify the name and shape (NHWC format) of the expected data inputs using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input":[1,1024,1024,3]}

            • If using the CLI, {\"input\":[1,1024,1024,3]}

          • Examples for two inputs:

            • If using the console, {"data1": [1,28,28,1], "data2":[1,28,28,1]}

            • If using the CLI, {\"data1\": [1,28,28,1], \"data2\":[1,28,28,1]}

        • KERAS: You must specify the name and shape (NCHW format) of expected data inputs using a dictionary format for your trained model. Note that while Keras model artifacts should be uploaded in NHWC (channel-last) format, DataInputConfig should be specified in NCHW (channel-first) format. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"input_1":[1,3,224,224]}

            • If using the CLI, {\"input_1\":[1,3,224,224]}

          • Examples for two inputs:

            • If using the console, {"input_1": [1,3,224,224], "input_2":[1,3,224,224]}

            • If using the CLI, {\"input_1\": [1,3,224,224], \"input_2\":[1,3,224,224]}

        • MXNET/ONNX/DARKNET: You must specify the name and shape (NCHW format) of the expected data inputs in order using a dictionary format for your trained model. The dictionary formats required for the console and CLI are different.

          • Examples for one input:

            • If using the console, {"data":[1,3,1024,1024]}

            • If using the CLI, {\"data\":[1,3,1024,1024]}

          • Examples for two inputs:

            • If using the console, {"var1": [1,1,28,28], "var2":[1,1,28,28]}

            • If using the CLI, {\"var1\": [1,1,28,28], \"var2\":[1,1,28,28]}

        • PyTorch: You can either specify the name and shape (NCHW format) of expected data inputs in order using a dictionary format for your trained model or you can specify the shape only using a list format. The dictionary formats required for the console and CLI are different. The list formats for the console and CLI are the same.

          • Examples for one input in dictionary format:

            • If using the console, {"input0":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224]}

          • Example for one input in list format: [[1,3,224,224]]

          • Examples for two inputs in dictionary format:

            • If using the console, {"input0":[1,3,224,224], "input1":[1,3,224,224]}

            • If using the CLI, {\"input0\":[1,3,224,224], \"input1\":[1,3,224,224]}

          • Example for two inputs in list format: [[1,3,224,224], [1,3,224,224]]

        • XGBOOST: input data name and shape are not needed.

        DataInputConfig supports the following parameters for CoreML TargetDevice (ML Model format):

        • shape: Input shape, for example {"input_1": {"shape": [1,224,224,3]}}. In addition to static input shapes, CoreML converter supports Flexible input shapes:

          • Range Dimension. You can use the Range Dimension feature if you know the input shape will be within some specific interval in that dimension, for example: {"input_1": {"shape": ["1..10", 224, 224, 3]}}

          • Enumerated shapes. Sometimes, the models are trained to work only on a select set of inputs. You can enumerate all supported input shapes, for example: {"input_1": {"shape": [[1, 224, 224, 3], [1, 160, 160, 3]]}}

        • default_shape: Default input shape. You can set a default shape during conversion for both Range Dimension and Enumerated Shapes. For example {"input_1": {"shape": ["1..10", 224, 224, 3], "default_shape": [1, 224, 224, 3]}}

        • type: Input type. Allowed values: Image and Tensor. By default, the converter generates an ML Model with inputs of type Tensor (MultiArray). User can set input type to be Image. Image input type requires additional input parameters such as bias and scale.

        • bias: If the input type is an Image, you need to provide the bias vector.

        • scale: If the input type is an Image, you need to provide a scale factor.

        CoreML ClassifierConfig parameters can be specified using OutputConfig CompilerOptions. CoreML converter supports Tensorflow and PyTorch models. CoreML conversion examples:

        • Tensor type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3]}}

        • Tensor type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224]}]

        • Image type input:

          • "DataInputConfig": {"input_1": {"shape": [[1,224,224,3], [1,160,160,3]], "default_shape": [1,224,224,3], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}}

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        • Image type input without input name (PyTorch):

          • "DataInputConfig": [{"shape": [[1,3,224,224], [1,3,160,160]], "default_shape": [1,3,224,224], "type": "Image", "bias": [-1,-1,-1], "scale": 0.007843137255}]

          • "CompilerOptions": {"class_labels": "imagenet_labels_1000.txt"}

        Depending on the model format, DataInputConfig requires the following parameters for ml_eia2 OutputConfig:TargetDevice.

        • For TensorFlow models saved in the SavedModel format, specify the input names from signature_def_key and the input model shapes for DataInputConfig. Specify the signature_def_key in OutputConfig:CompilerOptions if the model does not use TensorFlow's default signature def key. For example:

          • "DataInputConfig": {"inputs": [1, 224, 224, 3]}

          • "CompilerOptions": {"signature_def_key": "serving_custom"}

        • For TensorFlow models saved as a frozen graph, specify the input tensor names and shapes in DataInputConfig and the output tensor names for output_names in OutputConfig:CompilerOptions . For example:

          • "DataInputConfig": {"input_tensor:0": [1, 224, 224, 3]}

          • "CompilerOptions": {"output_names": ["output_tensor:0"]}

        Returns:
        Returns a reference to this object so that method calls can be chained together.
      • setFramework

        public void setFramework(String framework)

        Identifies the framework in which the model was trained. For example: TENSORFLOW.

        Parameters:
        framework - Identifies the framework in which the model was trained. For example: TENSORFLOW.
        See Also:
        Framework
      • getFramework

        public String getFramework()

        Identifies the framework in which the model was trained. For example: TENSORFLOW.

        Returns:
        Identifies the framework in which the model was trained. For example: TENSORFLOW.
        See Also:
        Framework
      • withFramework

        public InputConfig withFramework(String framework)

        Identifies the framework in which the model was trained. For example: TENSORFLOW.

        Parameters:
        framework - Identifies the framework in which the model was trained. For example: TENSORFLOW.
        Returns:
        Returns a reference to this object so that method calls can be chained together.
        See Also:
        Framework
      • withFramework

        public InputConfig withFramework(Framework framework)

        Identifies the framework in which the model was trained. For example: TENSORFLOW.

        Parameters:
        framework - Identifies the framework in which the model was trained. For example: TENSORFLOW.
        Returns:
        Returns a reference to this object so that method calls can be chained together.
        See Also:
        Framework
      • withFrameworkVersion

        public InputConfig withFrameworkVersion(String frameworkVersion)

        Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.

        For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.

        Parameters:
        frameworkVersion - Specifies the framework version to use. This API field is only supported for the MXNet, PyTorch, TensorFlow and TensorFlow Lite frameworks.

        For information about framework versions supported for cloud targets and edge devices, see Cloud Supported Instance Types and Frameworks and Edge Supported Frameworks.

        Returns:
        Returns a reference to this object so that method calls can be chained together.
      • toString

        public String toString()
        Returns a string representation of this object. This is useful for testing and debugging. Sensitive data will be redacted from this string using a placeholder value.
        Overrides:
        toString in class Object
        Returns:
        A string representation of this object.
        See Also:
        Object.toString()
Skip navigation links

AltStyle によって変換されたページ (->オリジナル) /