RFC 1406 - Definitions of Managed Objects for the DS1 and E1 Interface Types

[フレーム]

Network Working Group F. Baker
Request for Comments: 1406 Advanced Computer Communications
Obsoletes: 1232 J. Watt
 Newbridge Networks Corporation
 Editors
 January 1993
 Definitions of Managed Objects for the DS1 and E1 Interface Types
Status of this Memo
 This RFC specifies an IAB standards track protocol for the Internet
 community, and requests discussion and suggestions for improvements.
 Please refer to the current edition of the "IAB Official Protocol
 Standards" for the standardization state and status of this protocol.
 Distribution of this memo is unlimited.
Abstract
 This memo defines a portion of the Management Information Base (MIB)
 for use with network management protocols in TCP/IP-based internets.
 In particular, it defines objects for managing DS1 Interfaces --
 including both T1 and E1 (a.k.a., CEPT 2 Mbit/s) links.
 This document entirely replaces RFC 1232, which contains a
 fundamental error: many objects are encoded as Counters that must be
 encoded as INTEGERs or Gauges. The magnitude of the change required
 is sufficient that virtually every object changed. Therefore, the
 MIB documented in RFC 1232 should not be implemented.
Table of Contents
 1. The Network Management Framework ...................... 2
 2. Objects ............................................... 2
 2.1 Format of Definitions ................................ 3
 2.2 Changes from RFC 1232 ................................ 3
 3. Overview .............................................. 4
 3.1 Binding between ifIndex and DS1 Interfaces ........... 5
 3.2 Objectives of this MIB Module ........................ 7
 3.3 DS1 Terminology ...................................... 7
 3.3.1 Error Events ....................................... 7
 3.3.2 Performance Defects ................................ 8
 3.3.3 Performance Parameters ............................. 9
 3.3.4 Failure States ..................................... 11
 3.3.5 Other Terms ........................................ 13
 4. Definitions ........................................... 14
 4.1 DS1 Near End Group ................................... 14
Trunk MIB Working Group [Page 1]

RFC 1406 DS1/E1 MIB January 1993
 4.1.1 DS1 Configuration Table ............................ 14
 4.1.2 DS1 Current Table .................................. 22
 4.1.3 DS1 Interval Table ................................. 26
 4.1.4 DS1 Total Table .................................... 30
 4.2 DS1 Far End Group .................................... 33
 4.2.1 DS1 Far End Current Table .......................... 34
 4.2.2 DS1 Far End Interval Table ......................... 38
 4.2.3 DS1 Far End Total Table ............................ 41
 4.3 DS1 Fractional Group ................................. 45
 4.3.1 DS1 Fractional Table ............................... 45
 5. Acknowledgements ...................................... 47
 6. References ............................................ 48
 7. Security Considerations ............................... 50
 8. Authors' Addresses .................................... 50
1. The Network Management Framework
 The Internet-standard Network Management Framework consists of three
 components. They are:
 STD 16/RFC 1155 [1] which defines the SMI, the mechanisms used for
 describing and naming objects for the purpose of management. STD
 16/RFC 1212 [2] defines a more concise description mechanism,
 which is wholly consistent with the SMI.
 RFC 1156 [3] which defines MIB-I, the core set of managed objects
 for the Internet suite of protocols. STD 17/RFC 1213 [4] defines
 MIB-II, an evolution of MIB-I based on implementation experience
 and new operational requirements.
 STD 15/RFC 1157 [5] which defines the SNMP, the protocol used for
 network access to managed objects.
 The Framework permits new objects to be defined for the purpose of
 experimentation and evaluation.
2. Objects
 Managed objects are accessed via a virtual information store, termed
 the Management Information Base or MIB. Objects in the MIB are
 defined using the subset of Abstract Syntax Notation One (ASN.1) [6]
 defined in the SMI. In particular, each object has a name, a syntax,
 and an encoding. The name is an object identifier, an
 administratively assigned name, which specifies an object type. The
 object type together with an object instance serves to uniquely
 identify a specific instantiation of the object. For human
 convenience, we often use a textual string, termed the OBJECT
 DESCRIPTOR, to also refer to the object type.
Trunk MIB Working Group [Page 2]

RFC 1406 DS1/E1 MIB January 1993
 The syntax of an object type defines the abstract data structure
 corresponding to that object type. The ASN.1 language is used for
 this purpose. However, the SMI [1] purposely restricts the ASN.1
 constructs which may be used. These restrictions are explicitly made
 for simplicity.
 The encoding of an object type is simply how that object type is
 represented using the object type's syntax. Implicitly tied to the
 notion of an object type's syntax and encoding is how the object type
 is represented when being transmitted on the network.
 The SMI specifies the use of the basic encoding rules of ASN.1 [7],
 subject to the additional requirements imposed by the SNMP.
2.1. Format of Definitions
 Section 4 contains contains the specification of all object types
 contained in this MIB module. The object types are defined using the
 conventions defined in the SMI, as amended by the extensions
 specified in STD 16, RFC 1212 [2].
2.2. Changes from RFC 1232 
 The changes from RFC 1232 are the following:
 (1) This MIB module contains three groups: DS1 Near End Group
 which is mandatory, DS1 Far End Group which is optional,
 and the Fractional Table, which is optional.
 (2) The Far End Group is a new group and contains statistics
 that are collected from the far end DS1 interface. The
 Far End Group may only be implemented by DS1 systems that
 use the facilities data link to exchange this information
 - both T1.403 and PUB 54016 define ways to exchange this
 information over data links; vendors may use other
 proprietary means to do this on various link types.
 (3) ds1CSUIndex has been renamed dsx1LineIndex. This object
 is the identifier of a DS1 Interface on a device. On a
 CSU, a single DS1 data stream will cross two DS1
 interfaces, which have separate dsx1LineIndex values.
 (4) ds1Index has been renamed dsx1IfIndex. This value for
 this object is equal to the value of ifIndex from the
 Interfaces table of MIB II (STD 17, RFC 1213).
 (5) an object has been added (dsx1TransmitClockSource) to
 indicate the source of transmit clock.
Trunk MIB Working Group [Page 3]

RFC 1406 DS1/E1 MIB January 1993
 (6) The ACCESS for objects in the dsx1ConfigTable has been
 set to read-write for items that are configurable.
 (7) Description of test configurations has changed. A new
 object has been added called dsx1LoopbackConfig, which
 better describes the loopback capabilities of a DS1
 interface on a device.
 (8) The description of line alarm status has changed. A new
 object has been added called dsx1LineStatus. This object
 better describes the status (e.g., failure state and
 loopback state) of a DS1 interface.
 (9) All Counters have been changed to Gauges.
 (10) Information about how applications might use the zero
 code suppression have been removed; only the actual line
 coding algorithm is described. For clarity the object
 was thus renamed to dsx1LineCoding.
 (11) A Line Errored Seconds object has been added to all near
 end tables and the count of Bipolar Violations (BPVs) was
 changed to a count of Line Code Violations (LCVs).
 (12) Bursty Errored Seconds (a.k.a., Errored Seconds Type B)
 and Degraded Minutes objects have been added to all near
 end tables.
 (13) The Coding Violation error event is now referred to as a
 Path Coding Violation (PCV) Error Event.
3. Overview
 These objects are used when the particular media being used to
 realize an interface is a DS1 physical interface. At present, this
 applies to these values of the ifType variable in the Internet-
 standard MIB:
 ds1 (18)
 e1 (19)
 The definitions contained herein are based on the AT&T T-1 Superframe
 (a.k.a., D4) and Extended Superframe (ESF) formats [8, 9], the latter
 of which conforms to ANSI specifications [10], and the CCITT
 Recommendations [11, 12], referred to as E1 for the rest of this
 memo.
Trunk MIB Working Group [Page 4]

RFC 1406 DS1/E1 MIB January 1993
 The various T1 and E1 line disciplines are similar enough that
 separate MIBs are unwarranted, although there are some differences.
 For example, Loss of Frame is defined more rigorously in the ESF
 specification than in the D4 specification, but it is defined in
 both.
 Where it is necessary to distinguish between the flavors of E1 with
 and without CRC, E1-CRC to denotes the "with CRC" form (G.704 Table
 4b) and E1-noCRC denotes the "without CRC" form (G.704 Table 4a).
3.1. Binding between ifIndex and DS1 Interfaces
 Different physical configurations for the support of SNMP with DS1
 equipment exist. To accommodate these scenarios, two different
 indices for DS1 interfaces are introduced in this MIB. These indices
 are dsx1IfIndex and dsx1LineIndex.
 External interface scenario: the SNMP Agent represents all managed
 DS1 lines as external interfaces (for example, an Agent residing on
 the device supporting DS1 interfaces directly):
 For this scenario, all interfaces are assigned an integer value equal
 to ifIndex, and the following applies:
 ifIndex=dsx1IfIndex=dsx1LineIndex for all interfaces.
 The dsx1IfIndex column of the DS1 Configuration table relates each
 DS1 interface to its corresponding interface (ifIndex) in the
 Internet-standard MIB (MIB-II STD 17, RFC 1213).
 External & Internal interface scenario: the SNMP Agents resides on an
 host external from the device supporting DS1 interfaces (e.g., a
 router). The Agent represents both the host and the DS1 device. The
 index dsx1LineIndex is used to not only represent the DS1 interfaces
 external from the host/DS1-device combination, but also the DS1
 interfaces connecting the host and the DS1 device. The index
 dsx1IfIndex is always equal to ifIndex.
 Example:
 A shelf full of CSUs connected to a Router. An SNMP Agent residing
 on the router proxies for itself and the CSU. The router has also an
 Ethernet interface:
Trunk MIB Working Group [Page 5]

RFC 1406 DS1/E1 MIB January 1993
 +-----+
 | | |
 | | | +---------------------+
 |E | | 1.544 MBPS | Line#A | DS1 Link
 |t | R |---------------+ - - - - - - - - - +------>
 |h | | | |
 |e | O | 1.544 MBPS | Line#B | DS1 Link
 |r | |---------------+ - - - - - - - - - - +------>
 |n | U | | CSU Shelf |
 |e | | 1.544 MBPS | Line#C | DS1 Link
 |t | T |---------------+ - - - -- -- - - - - +------>
 | | | | |
 |-----| E | 1.544 MBPS | Line#D | DS1 Link
 | | |---------------+ - - - - -- - - - - +------>
 | | R | |_____________________|
 | | |
 | +-----+
 The assignment of the index values could for example be:
 ifIndex (= dsx1IfIndex) dsx1LineIndex
 1 NA NA (Ethernet)
 2 Line#A Router Side 6
 2 Line#A Network Side 7
 3 Line#B Router Side 8
 3 Line#B Network Side 9
 4 Line#C Router Side 10
 4 Line#C Network Side 11
 5 Line#D Router Side 12
 5 Line#D Network Side 13
 For this example, ifNumber is equal to 5. Note the following
 description of dsx1LineIndex: the dsx1LineIndex identifies a DS1
 Interface on a managed device. If there is an ifEntry that is
 directly associated with this and only this DS1 interface, it should
 have the same value as ifIndex. Otherwise, number the
 dsx1LineIndices with an unique identifier following the rules of
 choosing a number greater than ifNumber and numbering inside
 interfaces (e.g., equipment side) with even numbers and outside
 interfaces (e.g., network side) with odd numbers.
 If the CSU shelf is managed by itself by a local SNMP Agent, the
 situation would be:
Trunk MIB Working Group [Page 6]

RFC 1406 DS1/E1 MIB January 1993
 ifIndex (= dsx1IfIndex) dsx1LineIndex
 2 Line#A Router Side 2
 1 Line#A Network Side 1
 4 Line#B Router Side 4
 3 Line#B Network Side 3
 6 Line#C Router Side 6
 5 Line#C Network Side 5
 8 Line#D Router Side 8
 7 Line#D Network Side 7
3.2. Objectives of this MIB Module
 There are numerous things that could be included in a MIB for DS1
 signals: the management of multiplexors, CSUs, DSUs, and the like.
 The intent of this document is to facilitate the common management of
 all devices with DS1 interfaces. As such, a design decision was made
 up front to very closely align the MIB with the set of objects that
 can generally be read from DS1 devices that are currently deployed.
3.3. DS1 Terminology
 The terminology used in this document to describe error conditions on
 a DS1 interface as monitored by a DS1 device are based on the
 definitions from the ANSI T1M1.3/92-005R1 draft standard [13]. If
 the definition in this document does not match the definition in the
 ANSI T1M1.3/92-005R1 draft document, the implementer should follow
 the definition described in this document.
3.3.1. Error Events
 Bipolar Violation (BPV) Error Event
 A BPV error event for an AMI-coded signal is the
 occurrence of a pulse of the same polarity as the
 previous pulse. A BPV error event for a B8ZS- or HDB3-
 coded signal is the occurrence of a pulse of the same
 polarity as the previous pulse without being a part of
 the zero substitution code.
 Excessive Zeroes (EXZ) Error Event
 An Excessive Zeroes error event for an AMI-coded signal
 is the occurrence of more than fifteen contiguous zeroes.
 For a B8ZS coded signal, the defect occurs when more than
 seven contiguous zeroes are detected.
 Line Coding Violation (LCV) Error Event
 A Line Coding Violation (LCV) is the occurrence of either
 a Bipolar Violation (BPV) or Excessive Zeroes (EXZ) Error
 Event.
Trunk MIB Working Group [Page 7]

RFC 1406 DS1/E1 MIB January 1993
 Path Coding Violation (PCV) Error Event
 A Path Coding Violation error event is a frame
 synchronization bit error in the D4 and E1-noCRC formats,
 or a CRC error in the ESF and E1-CRC formats.
 Controlled Slip (CS) Error Event
 A Controlled Slip is the replication or deletion of the
 payload bits of a DS1 frame. A Controlled Slip may be
 performed when there is a difference between the timing
 of a synchronous receiving terminal and the received
 signal. A Controlled Slip does not cause an Out of Frame
 defect.
3.3.2. Performance Defects
 Out Of Frame (OOF) Defect
 An OOF defect is the occurrence of a particular density
 of Framing Error events.
 For T1 links, an Out of Frame defect is declared when the
 receiver detects two or more framing errors within a 3
 msec period for ESF signals and 0.75 msec for D4 signals,
 or two or more errors out of five or fewer consecutive
 framing-bits.
 For E1 links, an Out Of Frame defect is declared when
 three consecutive frame alignment signals have been
 received with an error (see G.706 Section 4.1 [17]).
 Once an Out Of Frame Defect is declared, the framer
 starts searching for a correct framing pattern. The Out
 of Frame defect ends when the signal is in frame.
 In-frame occurs when there are fewer than two frame bit
 errors within 3 msec period for ESF signals and 0.75 msec
 for D4 signals.
 For E1 links, in-frame occurs when a) in frame N the
 frame alignment signal is correct and b) in frame N+1 the
 frame alignment signal is absent (i.e., bit 2 in TS0 is a
 one) and c) in frame N+2 the frame alignment signal is
 present and correct.
 Alarm Indication Signal (AIS) Defect
 For D4 and ESF links, the 'all ones' condition is
 detected at a DS1 line interface upon observing an
 unframed signal with a one's density of at least 99.9%
 present for a time equal to or greater than T, where 3 ms
Trunk MIB Working Group [Page 8]

RFC 1406 DS1/E1 MIB January 1993
 <= T <= 75 ms. The AIS is terminated upon observing a
 signal not meeting the one's density or the unframed
 signal criteria for a period equal to or greater than
 than T.
 For E1 links, the 'all-ones' condition is detected at the
 line interface as a string of 512 bits containing fewer
 than three zero bits (see O.162 [14] Section 3.3.2).
3.3.3. Performance Parameters
 All performance parameters are accumulated in fifteen minute
 intervals and up to 96 intervals (24 hours worth) are kept by an
 agent. Fewer than 96 intervals of data will be available if the
 agent has been restarted within the last 24 hours. In addition,
 there is a rolling 24-hour total of each performance parameter.
 There is no requirement for an agent to ensure fixed relationship
 between the start of a fifteen minute interval and any wall clock;
 however some agents may align the fifteen minute intervals with
 quarter hours.
 Line Errored Seconds (LES)
 A Line Errored Second, according to T1M1.3, is a second
 in which one or more Line Code Violation error events
 were detected.
 While many implementations are currently unable to detect
 the zero strings, it is expected that interface
 manufacturers will add this capability in deference to
 ANSI; therefore, it will become available in time.
 In the T1M1.3 specification, near end Line Code
 Violations and far end Line Errored Seconds are counted.
 For consistency, we count Line Errored Seconds at both
 ends.
 Controlled Slip Seconds (CSS)
 A Controlled Slip Second is a one-second interval
 containing one or more controlled slips.
 Errored Seconds (ES)
 For ESF and E1-CRC links an Errored Second is a second
 with one or more Path Code Violations OR one or more Out
 of Frame defects OR one or more Controlled Slip events OR
 a detected AIS defect.
 For D4 and E1-noCRC links, the presence of Bipolar
Trunk MIB Working Group [Page 9]

RFC 1406 DS1/E1 MIB January 1993
 Violations also triggers an Errored Second.
 This is not incremented during an Unavailable Second.
 Bursty Errored Seconds (BES)
 A Bursty Errored Second (also known as Errored Second
 type B) is a second with fewer than 320 and more than 1
 Path Coding Violation error events, no Severely Errored
 Frame defects and no detected incoming AIS defects.
 Controlled slips are not included in this parameter.
 This is not incremented during an Unavailable Second.
 Severely Errored Seconds (SES)
 A Severely Errored Second for ESF signals is a second
 with 320 or more Path Code Violation Error Events OR one
 or more Out of Frame defects OR a detected AIS defect.
 For E1-CRC signals, a Severely Errored Second is a second
 with 832 or more Path Code Violation error events OR one
 or more Out of Frame defects.
 For E1-noCRC signals, a Severely Errored Second is a 2048
 LCVs or more.
 For D4 signals, a Severely Errored Second is a count of
 one-second intervals with Framing Error events, or an OOF
 defect, or 1544 LCVs or more.
 Controlled slips are not included in this parameter.
 This is not incremented during an Unavailable Second.
 Severely Errored Framing Second (SEFS)
 An Severely Errored Framing Second is a second with one
 or more Out of Frame defects OR a detected AIS defect.
 Degraded Minutes
 A Degraded Minute is one in which the estimated error
 rate exceeds 1E-6 but does not exceed 1E-3 (see G.821
 [15]).
 Degraded Minutes are determined by collecting all of the
 Available Seconds, removing any Severely Errored Seconds
 grouping the result in 60-second long groups and counting
 a 60-second long group (a.k.a., minute) as degraded if the
 cumulative errors during the seconds present in the group
 exceed 1E-6. Available seconds are merely those seconds
Trunk MIB Working Group [Page 10]

RFC 1406 DS1/E1 MIB January 1993
 which are not Unavailable as described below.
 Unavailable Seconds (UAS)
 Unavailable Seconds (UAS) are calculated by counting the
 number of seconds that the interface is unavailable. The
 DS1 interface is said to be unavailable from the onset of
 10 contiguous SESs, or the onset of the condition leading
 to a failure (see Failure States). If the condition
 leading to the failure was immediately preceded by one or
 more contiguous SESs, then the DS1 interface
 unavailability starts from the onset of these SESs. Once
 unavailable, and if no failure is present, the DS1
 interface becomes available at the onset of 10 contiguous
 seconds with no SESs. Once unavailable, and if a failure
 is present, the DS1 interface becomes available at the
 onset of 10 contiguous seconds with no SESs, if the
 failure clearing time is less than or equal to 10
 seconds. If the failure clearing time is more than 10
 seconds, the DS1 interface becomes available at the onset
 of 10 contiguous seconds with no SESs, or the onset
 period leading to the successful clearing condition,
 whichever occurs later. With respect to the DS1 error
 counts, all counters are incremented while the DS1
 interface is deemed available. While the interface is
 deemed unavailable, the only count that is incremented is
 UASs.
 A special case exists when the 10 or more second period
 crosses the 900 second statistics window boundary, as the
 foregoing description implies that the Severely Errored
 Second and Unavailable Second counters must be adjusted
 when the Unavailable Signal State is entered. Clearly,
 successive GETs of the affected dsx1IntervalSESs and
 dsx1IntervalUASs objects will return differing values if
 the first GET occurs during the first few seconds of the
 window. This is viewed as an unavoidable side-effect of
 selecting the presently defined managed objects as a
 basis for this memo.
3.3.4. Failure States
 The following failure states are received, or detected failures, that
 are reported in the dsx1LineStatus object. When a DS1 interface
 would, if ever, produce the conditions leading to the failure state
 is described in the appropriate specification.
Trunk MIB Working Group [Page 11]

RFC 1406 DS1/E1 MIB January 1993
 Far End Alarm Failure
 The Far End Alarm failure is also known as "Yellow Alarm"
 in the T1 case and "Distant Alarm" in the E1 case.
 For D4 links, the Far End Alarm failure is declared when
 bit 6 of all channels has been zero for at least 335 ms
 and is cleared when bit 6 of at least one channel is
 non-zero for a period T, where T is usually less than one
 second and always less than 5 seconds. The Far End Alarm
 failure is not declared for D4 links when a Loss of
 Signal is detected.
 For ESF links, the Far End Alarm failure is declared if
 the Yellow Alarm signal pattern occurs in at least seven
 out of ten contiguous 16-bit pattern intervals and is
 cleared if the Yellow Alarm signal pattern does not occur
 in ten contiguous 16-bit signal pattern intervals.
 For E1 links, the Far End Alarm failure is declared when
 bit 3 of time-slot zero is received set to one on two
 consecutive occasions. The Far End Alarm failure is
 cleared when bit 3 of time-slot zero is received set to
 zero.
 Alarm Indication Signal (AIS) Failure
 The Alarm Indication Signal failure is declared when an
 AIS defect is detected at the input and the AIS defect
 still exists after the Loss Of Frame failure (which is
 caused by the unframed nature of the 'all-ones' signal)
 is declared. The AIS failure is cleared when the Loss Of
 Frame failure is cleared.
 Loss Of Frame Failure
 For T1 links, the Loss Of Frame failure is declared when
 an OOF or LOS defect has persisted for T seconds, where
 2 <= T <= 10. The Loss Of Frame failure is cleared when
 there have been no OOF or LOS defects during a period T
 where 0 <= T <= 20. Many systems will perform "hit
 integration" within the period T before declaring or
 clearing the failure e.g., see TR 62411 [16].
 For E1 links, the Loss Of Frame Failure is declared when
 an OOF defect is detected.
 Loss Of Signal Failure
 For T1, the Loss Of Signal failure is declared upon
 observing 175 +/- 75 contiguous pulse positions with no
 pulses of either positive or negative polarity. The LOS
Trunk MIB Working Group [Page 12]

RFC 1406 DS1/E1 MIB January 1993
 failure is cleared upon observing an average pulse
 density of at least 12.5% over a period of 175 +/- 75
 contiguous pulse positions starting with the receipt of a
 pulse.
 For E1 links, the Loss Of Signal failure is declared when
 greater than 10 consecutive zeroes are detected (see
 O.162 Section 3.4.4).
 Loopback Pseudo-Failure
 The Loopback Pseudo-Failure is declared when the near end
 equipment has placed a loopback (of any kind) on the DS1.
 This allows a management entity to determine from one
 object whether the DS1 can be considered to be in service
 or not (from the point of view of the near end
 equipment).
 TS16 Alarm Indication Signal Failure
 For E1 links, the TS16 Alarm Indication Signal failure is
 declared when time-slot 16 is received as all ones for
 all frames of two consecutive multiframes (see G.732
 Section 4.2.6). This condition is never declared for T1.
 Loss Of MultiFrame Failure
 The Loss Of MultiFrame failure is declared when two
 consecutive multiframe alignment signals (bits 4 through
 7 of TS16 of frame 0) have been received with an error.
 The Loss Of Multiframe failure is cleared when the first
 correct multiframe alignment signal is received. The
 Loss Of Multiframe failure can only be declared for E1
 links operating with G.732 [18] framing (sometimes called
 "Channel Associated Signalling" mode).
 Far End Loss Of Multiframe Failure
 The Far End Loss Of Multiframe failure is declared when
 bit 2 of TS16 of frame 0 is received set to one on two
 consecutive occasions. The Far End Loss Of Multiframe
 failure is cleared when bit 2 of TS16 of frame 0 is
 received set to zero. The Far End Loss Of Multiframe
 failure can only be declared for E1 links operating in
 "Channel Associated Signalling" mode.
3.3.5. Other Terms
 Circuit Identifier
 This is a character string specified by the circuit
 vendor, and is useful when communicating with the vendor
 during the troubleshooting process.
Trunk MIB Working Group [Page 13]

RFC 1406 DS1/E1 MIB January 1993
4. Definitions
 RFC1406-MIB DEFINITIONS ::= BEGIN
 IMPORTS
 Gauge
 FROM RFC1155-SMI
 transmission, DisplayString
 FROM RFC1213-MIB
 OBJECT-TYPE
 FROM RFC-1212;
 -- This MIB module uses the extended OBJECT-TYPE macro as
 -- defined in RFC 1212.
 -- this is the MIB module for the DS1 objects
 ds1 OBJECT IDENTIFIER ::= { transmission 18 }
 -- note that this subsumes cept (19); there is no separate CEPT MIB
 -- The DS1 Near End Group
 -- Implementation of this group is mandatory for all systems
 -- that attach to a DS1 Interface.
 -- The DS1 Near End Group consists of four tables:
 -- DS1 Configuration
 -- DS1 Current
 -- DS1 Interval
 -- DS1 Total
 -- the DS1 Configuration Table
 dsx1ConfigTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dsx1ConfigEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The DS1 Configuration table."
 ::= { ds1 6 }
 dsx1ConfigEntry OBJECT-TYPE
 SYNTAX Dsx1ConfigEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
Trunk MIB Working Group [Page 14]

RFC 1406 DS1/E1 MIB January 1993
 "An entry in the DS1 Configuration table."
 INDEX { dsx1LineIndex }
 ::= { dsx1ConfigTable 1 }
 Dsx1ConfigEntry ::=
 SEQUENCE {
 dsx1LineIndex
 INTEGER,
 dsx1IfIndex
 INTEGER,
 dsx1TimeElapsed
 INTEGER,
 dsx1ValidIntervals
 INTEGER,
 dsx1LineType
 INTEGER,
 dsx1LineCoding
 INTEGER,
 dsx1SendCode
 INTEGER,
 dsx1CircuitIdentifier
 DisplayString,
 dsx1LoopbackConfig
 INTEGER,
 dsx1LineStatus
 INTEGER,
 dsx1SignalMode
 INTEGER,
 dsx1TransmitClockSource
 INTEGER,
 dsx1Fdl
 INTEGER
 }
 dsx1LineIndex OBJECT-TYPE
 SYNTAX INTEGER (1..'7fffffff'h)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "This object is the identifier of a DS1 Inter-
 face on a managed device. If there is an ifEn-
 try that is directly associated with this and
 only this DS1 interface, it should have the
 same value as ifIndex. Otherwise, the value
 exceeds ifNumber, and is a unique identifier
 following this rule: inside interfaces (e.g.,
 equipment side) with even numbers and outside
 interfaces (e.g., network side) with odd
Trunk MIB Working Group [Page 15]

RFC 1406 DS1/E1 MIB January 1993
 numbers."
 ::= { dsx1ConfigEntry 1 }
 dsx1IfIndex OBJECT-TYPE
 SYNTAX INTEGER (1..'7fffffff'h)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "This value for this object is equal to the
 value of ifIndex from the Interfaces table of
 MIB II (RFC 1213)."
 ::= { dsx1ConfigEntry 2 }
 dsx1TimeElapsed OBJECT-TYPE
 SYNTAX INTEGER (0..899)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of seconds that have elapsed since
 the beginning of the current error-measurement
 period."
 ::= { dsx1ConfigEntry 3 }
 dsx1ValidIntervals OBJECT-TYPE
 SYNTAX INTEGER (0..96)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of previous intervals for which
 valid data was collected. The value will be 96
 unless the interface was brought on-line within
 the last 24 hours, in which case the value will
 be the number of complete 15 minute intervals
 the since interface has been online."
 ::= { dsx1ConfigEntry 4 }
 dsx1LineType OBJECT-TYPE
 SYNTAX INTEGER {
 other(1),
 dsx1ESF(2),
 dsx1D4(3),
 dsx1E1(4),
 dsx1E1-CRC(5),
 dsx1E1-MF(6),
Trunk MIB Working Group [Page 16]

RFC 1406 DS1/E1 MIB January 1993
 dsx1E1-CRC-MF(7)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "This variable indicates the variety of DS1
 Line implementing this circuit. The type of
 circuit affects the number of bits per second
 that the circuit can reasonably carry, as well
 as the interpretation of the usage and error
 statistics. The values, in sequence, describe:
 TITLE: SPECIFICATION:
 dsx1ESF Extended SuperFrame DS1
 dsx1D4 AT&T D4 format DS1
 dsx1E1 CCITT Recommendation G.704
 (Table 4a)
 dsx1E1-CRC CCITT Recommendation G.704
 (Table 4b)
 dsxE1-MF G.704 (Table 4a) with TS16
 multiframing enabled
 dsx1E1-CRC-MF G.704 (Table 4b) with TS16
 multiframing enabled"
 ::= { dsx1ConfigEntry 5 }
 dsx1LineCoding OBJECT-TYPE
 SYNTAX INTEGER {
 dsx1JBZS (1),
 dsx1B8ZS (2),
 dsx1HDB3 (3),
 dsx1ZBTSI (4),
 dsx1AMI (5),
 other(6)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "This variable describes the variety of Zero
 Code Suppression used on the link, which in
 turn affects a number of its characteristics.
 dsx1JBZS refers the Jammed Bit Zero Suppres-
 sion, in which the AT&T specification of at
 least one pulse every 8 bit periods is literal-
 ly implemented by forcing a pulse in bit 8 of
 each channel. Thus, only seven bits per chan-
Trunk MIB Working Group [Page 17]

RFC 1406 DS1/E1 MIB January 1993
 nel, or 1.344 Mbps, is available for data.
 dsx1B8ZS refers to the use of a specified pat-
 tern of normal bits and bipolar violations
 which are used to replace a sequence of eight
 zero bits.
 ANSI Clear Channels may use dsx1ZBTSI, or Zero
 Byte Time Slot Interchange.
 E1 links, with or without CRC, use dsx1HDB3 or
 dsx1AMI.
 dsx1AMI refers to a mode wherein no zero code
 suppression is present and the line encoding
 does not solve the problem directly. In this
 application, the higher layer must provide data
 which meets or exceeds the pulse density re-
 quirements, such as inverting HDLC data."
 ::= { dsx1ConfigEntry 6 }
 dsx1SendCode OBJECT-TYPE
 SYNTAX INTEGER {
 dsx1SendNoCode(1),
 dsx1SendLineCode(2),
 dsx1SendPayloadCode(3),
 dsx1SendResetCode(4),
 dsx1SendQRS(5),
 dsx1Send511Pattern(6),
 dsx1Send3in24Pattern(7),
 dsx1SendOtherTestPattern(8)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "This variable indicates what type of code is
 being sent across the DS1 interface by the dev-
 ice. The values mean:
 dsx1SendNoCode
 sending looped or normal data
 dsx1SendLineCode
 sending a request for a line loopback
 dsx1SendPayloadCode
 sending a request for a payload loopback
Trunk MIB Working Group [Page 18]

RFC 1406 DS1/E1 MIB January 1993
 dsx1SendResetCode
 sending a loopback termination request
 dsx1SendQRS
 sending a Quasi-Random Signal (QRS) test
 pattern
 dsx1Send511Pattern
 sending a 511 bit fixed test pattern
 dsx1Send3in24Pattern
 sending a fixed test pattern of 3 bits set
 in 24
 dsx1SendOtherTestPattern
 sending a test pattern other than those
 described by this object"
 ::= { dsx1ConfigEntry 7 }
 dsx1CircuitIdentifier OBJECT-TYPE
 SYNTAX DisplayString (SIZE (0..255))
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "This variable contains the transmission
 vendor's circuit identifier, for the purpose of
 facilitating troubleshooting."
 ::= { dsx1ConfigEntry 8 }
 dsx1LoopbackConfig OBJECT-TYPE
 SYNTAX INTEGER {
 dsx1NoLoop(1),
 dsx1PayloadLoop(2),
 dsx1LineLoop(3),
 dsx1OtherLoop(4)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "This variable represents the loopback confi-
 guration of the DS1 interface. Agents support-
 ing read/write access should return badValue in
 response to a requested loopback state that the
 interface does not support. The values mean:
Trunk MIB Working Group [Page 19]

RFC 1406 DS1/E1 MIB January 1993
 dsx1NoLoop
 Not in the loopback state. A device that
 is not capable of performing a loopback on
 the interface shall always return this as
 it's value.
 dsx1PayloadLoop
 The received signal at this interface is
 looped through the device. Typically the
 received signal is looped back for re-
 transmission after it has passed through
 the device's framing function.
 dsx1LineLoop
 The received signal at this interface does
 not go through the device (minimum pene-
 tration) but is looped back out.
 dsx1OtherLoop
 Loopbacks that are not defined here."
 ::= { dsx1ConfigEntry 9 }
 dsx1LineStatus OBJECT-TYPE
 SYNTAX INTEGER (1..8191)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "This variable indicates the Line Status of the
 interface. It contains loopback, failure, re-
 ceived 'alarm' and transmitted 'alarm' infor-
 mation.
 The dsx1LineStatus is a bit map represented as a sum,
 therefore, it can represent multiple failures (alarms) and
 a LoopbackState simultaneously.
 dsx1NoAlarm should be set if and only if no other flag is
 set.
 If the dsx1LoopbackState bit is set, the loopback in ef-
 fect can be determined from the dsx1LoopbackConfig object.
 The various bit positions are:
 1 dsx1NoAlarm No Alarm Present
 2 dsx1RcvFarEndLOF Far end LOF (a.k.a., Yellow Alarm)
 4 dsx1XmtFarEndLOF Near end sending LOF Indication
 8 dsx1RcvAIS Far end sending AIS
Trunk MIB Working Group [Page 20]

RFC 1406 DS1/E1 MIB January 1993
 16 dsx1XmtAIS Near end sending AIS
 32 dsx1LossOfFrame Near end LOF (a.k.a., Red Alarm)
 64 dsx1LossOfSignal Near end Loss Of Signal
 128 dsx1LoopbackState Near end is looped
 256 dsx1T16AIS E1 TS16 AIS
 512 dsx1RcvFarEndLOMF Far End Sending TS16 LOMF
 1024 dsx1XmtFarEndLOMF Near End Sending TS16 LOMF
 2048 dsx1RcvTestCode Near End detects a test code
 4096 dsx1OtherFailure any line status not defined here"
 ::= { dsx1ConfigEntry 10 }
 dsx1SignalMode OBJECT-TYPE
 SYNTAX INTEGER {
 none (1),
 robbedBit (2),
 bitOriented (3),
 messageOriented (4)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "'none' indicates that no bits are reserved for
 signaling on this channel.
 'robbedBit' indicates that T1 Robbed Bit Sig-
 naling is in use.
 'bitOriented' indicates that E1 Channel Asso-
 ciated Signaling is in use.
 'messageOriented' indicates that Common Chan-
 nel Signaling is in use either on channel 16 of
 an E1 link or channel 24 of a T1."
 ::= { dsx1ConfigEntry 11 }
 dsx1TransmitClockSource OBJECT-TYPE
 SYNTAX INTEGER {
 loopTiming (1),
 localTiming (2),
 throughTiming (3)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "The source of Tranmit Clock.
Trunk MIB Working Group [Page 21]

RFC 1406 DS1/E1 MIB January 1993
 'loopTiming' indicates that the recovered re-
 ceive clock is used as the transmit clock.
 'localTiming' indicates that a local clock
 source is used.
 'throughTiming' indicates that recovered re-
 ceive clock from another interface is used as
 the transmit clock."
 ::= { dsx1ConfigEntry 12 }
 dsx1Fdl OBJECT-TYPE
 SYNTAX INTEGER {
 other(1),
 dsx1Ansi-T1-403(2),
 dsx1Att-54016(4),
 dsx1Fdl-none(8)
 }
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "This bitmap describes the use of the facili-
 ties data link, and is the sum of the capabili-
 ties:
 'other' indicates that a protocol other than
 one following is used.
 'dsx1Ansi-T1-403' refers to the FDL exchange
 recommended by ANSI.
 'dsx1Att-54016' refers to ESF FDL exchanges.
 'dsx1Fdl-none' indicates that the device does
 not use the FDL."
 ::= { dsx1ConfigEntry 13 }
 -- the DS1 Current Table
 -- The DS1 current table contains various statistics being
 -- collected for the current 15 minute interval.
 dsx1CurrentTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dsx1CurrentEntry
 ACCESS not-accessible
 STATUS mandatory
Trunk MIB Working Group [Page 22]

RFC 1406 DS1/E1 MIB January 1993
 DESCRIPTION
 "The DS1 Current table."
 ::= { ds1 7 }
 dsx1CurrentEntry OBJECT-TYPE
 SYNTAX Dsx1CurrentEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "An entry in the DS1 Current table."
 INDEX { dsx1CurrentIndex }
 ::= { dsx1CurrentTable 1 }
 Dsx1CurrentEntry ::=
 SEQUENCE {
 dsx1CurrentIndex
 INTEGER,
 dsx1CurrentESs
 Gauge,
 dsx1CurrentSESs
 Gauge,
 dsx1CurrentSEFSs
 Gauge,
 dsx1CurrentUASs
 Gauge,
 dsx1CurrentCSSs
 Gauge,
 dsx1CurrentPCVs
 Gauge,
 dsx1CurrentLESs
 Gauge,
 dsx1CurrentBESs
 Gauge,
 dsx1CurrentDMs
 Gauge,
 dsx1CurrentLCVs
 Gauge
 }
 dsx1CurrentIndex OBJECT-TYPE
 SYNTAX INTEGER (1..'7fffffff'h)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The index value which uniquely identifies the
 DS1 interface to which this entry is applica-
 ble. The interface identified by a particular
Trunk MIB Working Group [Page 23]

RFC 1406 DS1/E1 MIB January 1993
 value of this index is the same interface as
 identified by the same value as a dsx1LineIndex
 object instance."
 ::= { dsx1CurrentEntry 1 }
 dsx1CurrentESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Errored Seconds, encountered by
 a DS1 interface in the current 15 minute inter-
 val."
 ::= { dsx1CurrentEntry 2 }
 dsx1CurrentSESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Severely Errored Seconds encoun-
 tered by a DS1 interface in the current 15
 minute interval."
 ::= { dsx1CurrentEntry 3 }
 dsx1CurrentSEFSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Severely Errored Framing Seconds
 encountered by a DS1 interface in the current
 15 minute interval."
 ::= { dsx1CurrentEntry 4 }
 dsx1CurrentUASs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Unavailable Seconds encountered
 by a DS1 interface in the current 15 minute in-
 terval."
 ::= { dsx1CurrentEntry 5 }
Trunk MIB Working Group [Page 24]

RFC 1406 DS1/E1 MIB January 1993
 dsx1CurrentCSSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Controlled Slip Seconds encoun-
 tered by a DS1 interface in the current 15
 minute interval."
 ::= { dsx1CurrentEntry 6 }
 dsx1CurrentPCVs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Path Coding Violations encoun-
 tered by a DS1 interface in the current 15
 minute interval."
 ::= { dsx1CurrentEntry 7 }
 dsx1CurrentLESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Line Errored Seconds encountered
 by a DS1 interface in the current 15 minute in-
 terval."
 ::= { dsx1CurrentEntry 8 }
 dsx1CurrentBESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Bursty Errored Seconds (BESs)
 encountered by a DS1 interface in the current
 15 minute interval."
 ::= {dsx1CurrentEntry 9 }
 dsx1CurrentDMs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
Trunk MIB Working Group [Page 25]

RFC 1406 DS1/E1 MIB January 1993
 DESCRIPTION
 "The number of Degraded Minutes (DMs) encoun-
 tered by a DS1 interface in the current 15
 minute interval."
 ::= { dsx1CurrentEntry 10 }
 dsx1CurrentLCVs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Line Code Violations (LCVs) en-
 countered by a DS1 interface in the current 15
 minute interval."
 ::= {dsx1CurrentEntry 11 }
 -- the DS1 Interval
 -- The DS1 Interval Table contains various statistics
 -- collected by each DS1 Interface over the previous 24 hours of
 -- operation. The past 24 hours are broken into 96 completed
 -- 15 minute intervals.
 dsx1IntervalTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dsx1IntervalEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The DS1 Interval table."
 ::= { ds1 8 }
 dsx1IntervalEntry OBJECT-TYPE
 SYNTAX Dsx1IntervalEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "An entry in the DS1 Interval table."
 INDEX { dsx1IntervalIndex, dsx1IntervalNumber }
 ::= { dsx1IntervalTable 1 }
 Dsx1IntervalEntry ::=
 SEQUENCE {
 dsx1IntervalIndex
 INTEGER,
 dsx1IntervalNumber
Trunk MIB Working Group [Page 26]

RFC 1406 DS1/E1 MIB January 1993
 INTEGER,
 dsx1IntervalESs
 Gauge,
 dsx1IntervalSESs
 Gauge,
 dsx1IntervalSEFSs
 Gauge,
 dsx1IntervalUASs
 Gauge,
 dsx1IntervalCSSs
 Gauge,
 dsx1IntervalPCVs
 Gauge,
 dsx1IntervalLESs
 Gauge,
 dsx1IntervalBESs
 Gauge,
 dsx1IntervalDMs
 Gauge,
 dsx1IntervalLCVs
 Gauge
 }
 dsx1IntervalIndex OBJECT-TYPE
 SYNTAX INTEGER (1..'7fffffff'h)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The index value which uniquely identifies the
 DS1 interface to which this entry is applica-
 ble. The interface identified by a particular
 value of this index is the same interface as
 identified by the same value as a dsx1LineIndex
 object instance."
 ::= { dsx1IntervalEntry 1 }
 dsx1IntervalNumber OBJECT-TYPE
 SYNTAX INTEGER (1..96)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "A number between 1 and 96, where 1 is the most
 recently completed 15 minute interval and 96 is
 the least recently completed 15 minutes inter-
 val (assuming that all 96 intervals are
 valid)."
 ::= { dsx1IntervalEntry 2 }
Trunk MIB Working Group [Page 27]

RFC 1406 DS1/E1 MIB January 1993
 dsx1IntervalESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Errored Seconds encountered by a
 DS1 interface in one of the previous 96, indi-
 vidual 15 minute, intervals."
 ::= { dsx1IntervalEntry 3 }
 dsx1IntervalSESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Severely Errored Seconds encoun-
 tered by a DS1 interface in one of the previous
 96, individual 15 minute, intervals."
 ::= { dsx1IntervalEntry 4 }
 dsx1IntervalSEFSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Severely Errored Framing Seconds
 encountered by a DS1 interface in one of the
 previous 96, individual 15 minute, intervals."
 ::= { dsx1IntervalEntry 5 }
 dsx1IntervalUASs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Unavailable Seconds encountered
 by a DS1 interface in one of the previous 96,
 individual 15 minute, intervals."
 ::= { dsx1IntervalEntry 6 }
 dsx1IntervalCSSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
Trunk MIB Working Group [Page 28]

RFC 1406 DS1/E1 MIB January 1993
 DESCRIPTION
 "The number of Controlled Slip Seconds encoun-
 tered by a DS1 interface in one of the previous
 96, individual 15 minute, intervals."
 ::= { dsx1IntervalEntry 7 }
 dsx1IntervalPCVs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Path Coding Violations encoun-
 tered by a DS1 interface in one of the previous
 96, individual 15 minute, intervals."
 ::= { dsx1IntervalEntry 8 }
 dsx1IntervalLESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Line Errored Seconds encountered
 by a DS1 interface in one of the previous 96,
 individual 15 minute, intervals."
 ::= { dsx1IntervalEntry 9 }
 dsx1IntervalBESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Bursty Errored Seconds (BESs)
 encountered by a DS1 interface in one of the
 previous 96, individual 15 minute, intervals."
 ::= {dsx1IntervalEntry 10 }
 dsx1IntervalDMs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Degraded Minutes (DMs) encoun-
 tered by a DS1 interface in one of the previous
 96, individual 15 minute, intervals."
Trunk MIB Working Group [Page 29]

RFC 1406 DS1/E1 MIB January 1993
 ::= { dsx1IntervalEntry 11 }
 dsx1IntervalLCVs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Line Code Violations (LCVs) en-
 countered by a DS1 interface in the current 15
 minute interval."
 ::= {dsx1IntervalEntry 12 }
 -- the DS1 Total
 -- The DS1 Total Table contains the cumulative sum of the
 -- various statistics for the 24 hour period preceding the
 -- current interval.
 dsx1TotalTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dsx1TotalEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The DS1 Total table. 24 hour interval."
 ::= { ds1 9 }
 dsx1TotalEntry OBJECT-TYPE
 SYNTAX Dsx1TotalEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "An entry in the DS1 Total table."
 INDEX { dsx1TotalIndex }
 ::= { dsx1TotalTable 1 }
 Dsx1TotalEntry ::=
 SEQUENCE {
 dsx1TotalIndex
 INTEGER,
 dsx1TotalESs
 Gauge,
 dsx1TotalSESs
 Gauge,
 dsx1TotalSEFSs
 Gauge,
Trunk MIB Working Group [Page 30]

RFC 1406 DS1/E1 MIB January 1993
 dsx1TotalUASs
 Gauge,
 dsx1TotalCSSs
 Gauge,
 dsx1TotalPCVs
 Gauge,
 dsx1TotalLESs
 Gauge,
 dsx1TotalBESs
 Gauge,
 dsx1TotalDMs
 Gauge,
 dsx1TotalLCVs
 Gauge
 }
 dsx1TotalIndex OBJECT-TYPE
 SYNTAX INTEGER (1..'7fffffff'h)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The index value which uniquely identifies the
 DS1 interface to which this entry is applica-
 ble. The interface identified by a particular
 value of this index is the same interface as
 identified by the same value as a dsx1LineIndex
 object instance."
 ::= { dsx1TotalEntry 1 }
 dsx1TotalESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Errored Seconds encountered by a
 DS1 interface in the previous 24 hour interval"
 ::= { dsx1TotalEntry 2 }
 dsx1TotalSESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Severely Errored Seconds encoun-
 tered by a DS1 interface in the previous 24
 hour interval."
Trunk MIB Working Group [Page 31]

RFC 1406 DS1/E1 MIB January 1993
 ::= { dsx1TotalEntry 3 }
 dsx1TotalSEFSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Severely Errored Framing Seconds
 encountered by a DS1 interface in the previous
 24 hour interval."
 ::= { dsx1TotalEntry 4 }
 dsx1TotalUASs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Unavailable Seconds encountered
 by a DS1 interface in the previous 24 hour in-
 terval."
 ::= { dsx1TotalEntry 5 }
 dsx1TotalCSSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Controlled Slip Seconds encoun-
 tered by a DS1 interface in the previous 24
 hour interval."
 ::= { dsx1TotalEntry 6 }
 dsx1TotalPCVs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Path Coding Violations encoun-
 tered by a DS1 interface in the previous 24
 hour interval."
 ::= { dsx1TotalEntry 7 }
Trunk MIB Working Group [Page 32]

RFC 1406 DS1/E1 MIB January 1993
 dsx1TotalLESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Line Errored Seconds encountered
 by a DS1 interface in the previous 24 hour in-
 terval."
 ::= { dsx1TotalEntry 8 }
 dsx1TotalBESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Bursty Errored Seconds (BESs)
 encountered by a DS1 interface in the previous
 24 hour interval."
 ::= { dsx1TotalEntry 9 }
 dsx1TotalDMs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Degraded Minutes (DMs) encoun-
 tered by a DS1 interface in the previous 24
 hour interval."
 ::= { dsx1TotalEntry 10 }
 dsx1TotalLCVs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Line Code Violations (LCVs) en-
 countered by a DS1 interface in the current 15
 minute interval."
 ::= {dsx1TotalEntry 11 }
 -- The DS1 Far End Group
 -- Implementation of this group is optional for all systems
 -- that attach to a DS1 Interface.
Trunk MIB Working Group [Page 33]

RFC 1406 DS1/E1 MIB January 1993
 -- The DS1 Far End Group consists of three tables:
 -- DS1 Far End Current
 -- DS1 Far End Interval
 -- DS1 Far End Total
 -- The DS1 Far End Current Table
 -- The DS1 Far End Current table contains various statistics
 -- being collected for the current 15 minute interval.
 -- The statistics are collected from the far end messages on the
 -- Facilities Data Link. The definitions are the same as
 -- described for the near-end information.
 dsx1FarEndCurrentTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dsx1FarEndCurrentEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The DS1 Far End Current table."
 ::= { ds1 10 }
 dsx1FarEndCurrentEntry OBJECT-TYPE
 SYNTAX Dsx1FarEndCurrentEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "An entry in the DS1 Far End Current table."
 INDEX { dsx1FarEndCurrentIndex }
 ::= { dsx1FarEndCurrentTable 1 }
 Dsx1FarEndCurrentEntry ::=
 SEQUENCE {
 dsx1FarEndCurrentIndex
 INTEGER,
 dsx1FarEndTimeElapsed
 INTEGER,
 dsx1FarEndValidIntervals
 INTEGER,
 dsx1FarEndCurrentESs
 Gauge,
 dsx1FarEndCurrentSESs
 Gauge,
 dsx1FarEndCurrentSEFSs
 Gauge,
 dsx1FarEndCurrentUASs
 Gauge,
 dsx1FarEndCurrentCSSs
Trunk MIB Working Group [Page 34]

RFC 1406 DS1/E1 MIB January 1993
 Gauge,
 dsx1FarEndCurrentLESs
 Gauge,
 dsx1FarEndCurrentPCVs
 Gauge,
 dsx1FarEndCurrentBESs
 Gauge,
 dsx1FarEndCurrentDMs
 Gauge
 }
 dsx1FarEndCurrentIndex OBJECT-TYPE
 SYNTAX INTEGER (1..'7fffffff'h)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The index value which uniquely identifies the
 DS1 interface to which this entry is applica-
 ble. The interface identified by a particular
 value of this index is the same interface as
 identified by the same value an dsx1LineIndex
 object instance."
 ::= { dsx1FarEndCurrentEntry 1 }
 dsx1FarEndTimeElapsed OBJECT-TYPE
 SYNTAX INTEGER (0..899)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of seconds that have elapsed
 since the beginning of the far end current
 error-measurement period."
 ::= { dsx1FarEndCurrentEntry 2 }
 dsx1FarEndValidIntervals OBJECT-TYPE
 SYNTAX INTEGER (0..96)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of previous far end intervals
 for which valid data was collected. The
 value will be 96 unless the interface was
 brought online within the last 24 hours,
 in which case the value will be the number
 of complete 15 minute far end intervals
 since the interface has been online."
Trunk MIB Working Group [Page 35]

RFC 1406 DS1/E1 MIB January 1993
 ::= { dsx1FarEndCurrentEntry 3 }
 dsx1FarEndCurrentESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far Far End Errored Seconds en-
 countered by a DS1 interface in the current 15
 minute interval."
 ::= { dsx1FarEndCurrentEntry 4 }
 dsx1FarEndCurrentSESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Severely Errored Seconds
 encountered by a DS1 interface in the current
 15 minute interval."
 ::= { dsx1FarEndCurrentEntry 5 }
 dsx1FarEndCurrentSEFSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Severely Errored Framing
 Seconds encountered by a DS1 interface in the
 current 15 minute interval."
 ::= { dsx1FarEndCurrentEntry 6 }
 dsx1FarEndCurrentUASs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Unavailable Seconds encountered
 by a DS1 interface in the current 15 minute in-
 terval."
 ::= { dsx1FarEndCurrentEntry 7 }
Trunk MIB Working Group [Page 36]

RFC 1406 DS1/E1 MIB January 1993
 dsx1FarEndCurrentCSSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Controlled Slip Seconds
 encountered by a DS1 interface in the current
 15 minute interval."
 ::= { dsx1FarEndCurrentEntry 8 }
 dsx1FarEndCurrentLESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Line Errored Seconds en-
 countered by a DS1 interface in the current 15
 minute interval."
 ::= { dsx1FarEndCurrentEntry 9 }
 dsx1FarEndCurrentPCVs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Path Coding Violations
 reported via the far end block error count en-
 countered by a DS1 interface in the current 15
 minute interval."
 ::= { dsx1FarEndCurrentEntry 10 }
 dsx1FarEndCurrentBESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Bursty Errored Seconds (BESs)
 encountered by a DS1 interface in the current
 15 minute interval."
 ::= {dsx1FarEndCurrentEntry 11 }
 dsx1FarEndCurrentDMs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
Trunk MIB Working Group [Page 37]

RFC 1406 DS1/E1 MIB January 1993
 STATUS mandatory
 DESCRIPTION
 "The number of Degraded Minutes (DMs) encoun-
 tered by a DS1 interface in the current 15
 minute interval."
 ::= { dsx1FarEndCurrentEntry 12 }
 -- The DS1 Far End Interval Table
 -- The DS1 Far End Interval Table contains various statistics
 -- collected by each DS1 interface over the previous 24 hours of
 -- operation. The past 24 hours are broken into 96
 -- completed 15 minute intervals.
 dsx1FarEndIntervalTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dsx1FarEndIntervalEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The DS1 Far End Interval table."
 ::= { ds1 11 }
 dsx1FarEndIntervalEntry OBJECT-TYPE
 SYNTAX Dsx1FarEndIntervalEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "An entry in the DS1 Far End Interval table."
 INDEX { dsx1FarEndIntervalIndex,
 dsx1FarEndIntervalNumber }
 ::= { dsx1FarEndIntervalTable 1 }
 Dsx1FarEndIntervalEntry ::=
 SEQUENCE {
 dsx1FarEndIntervalIndex
 INTEGER,
 dsx1FarEndIntervalNumber
 INTEGER,
 dsx1FarEndIntervalESs
 Gauge,
 dsx1FarEndIntervalSESs
 Gauge,
 dsx1FarEndIntervalSEFSs
 Gauge,
 dsx1FarEndIntervalUASs
 Gauge,
Trunk MIB Working Group [Page 38]

RFC 1406 DS1/E1 MIB January 1993
 dsx1FarEndIntervalCSSs
 Gauge,
 dsx1FarEndIntervalLESs
 Gauge,
 dsx1FarEndIntervalPCVs
 Gauge,
 dsx1FarEndIntervalBESs
 Gauge,
 dsx1FarEndIntervalDMs
 Gauge
 }
 dsx1FarEndIntervalIndex OBJECT-TYPE
 SYNTAX INTEGER (1..'7fffffff'h)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The index value which uniquely identifies the
 DS1 interface to which this entry is applica-
 ble. The interface identified by a particular
 value of this index is the same interface as
 identified by the same value as a dsx1LineIndex
 object instance."
 ::= { dsx1FarEndIntervalEntry 1 }
 dsx1FarEndIntervalNumber OBJECT-TYPE
 SYNTAX INTEGER (1..96)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "A number between 1 and 96, where 1 is the most
 recently completed 15 minute interval and 96 is
 the least recently completed 15 minutes inter-
 val (assuming that all 96 intervals are
 valid)."
 ::= { dsx1FarEndIntervalEntry 2 }
 dsx1FarEndIntervalESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Errored Seconds encoun-
 tered by a DS1 interface in one of the previous
 96, individual 15 minute, intervals."
 ::= { dsx1FarEndIntervalEntry 3 }
Trunk MIB Working Group [Page 39]

RFC 1406 DS1/E1 MIB January 1993
 dsx1FarEndIntervalSESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Severely Errored Seconds
 encountered by a DS1 interface in one of the
 previous 96, individual 15 minute, intervals."
 ::= { dsx1FarEndIntervalEntry 4 }
 dsx1FarEndIntervalSEFSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Severely Errored Framing
 Seconds encountered by a DS1 interface in one
 of the previous 96, individual 15 minute, in-
 tervals."
 ::= { dsx1FarEndIntervalEntry 5 }
 dsx1FarEndIntervalUASs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Unavailable Seconds encountered
 by a DS1 interface in one of the previous 96,
 individual 15 minute, intervals."
 ::= { dsx1FarEndIntervalEntry 6 }
 dsx1FarEndIntervalCSSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Controlled Slip Seconds
 encountered by a DS1 interface in one of the
 previous 96, individual 15 minute, intervals."
 ::= { dsx1FarEndIntervalEntry 7 }
 dsx1FarEndIntervalLESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
Trunk MIB Working Group [Page 40]

RFC 1406 DS1/E1 MIB January 1993
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Line Errored Seconds en-
 countered by a DS1 interface in one of the pre-
 vious 96, individual 15 minute, intervals."
 ::= { dsx1FarEndIntervalEntry 8 }
 dsx1FarEndIntervalPCVs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Path Coding Violations
 reported via the far end block error count en-
 countered by a DS1 interface in one of the pre-
 vious 96, individual 15 minute, intervals."
 ::= { dsx1FarEndIntervalEntry 9 }
 dsx1FarEndIntervalBESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Bursty Errored Seconds (BESs)
 encountered by a DS1 interface in one of the
 previous 96, individual 15 minute, intervals."
 ::= {dsx1FarEndIntervalEntry 10 }
 dsx1FarEndIntervalDMs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Degraded Minutes (DMs) encoun-
 tered by a DS1 interface in one of the previous
 96, individual 15 minute, intervals."
 ::= { dsx1FarEndIntervalEntry 11 }
 -- The DS1 Far End Total Table
 -- The DS1 Far End Total Table contains the cumulative sum of the
 -- various statistics for the 24 hour period preceding the
 -- current interval.
Trunk MIB Working Group [Page 41]

RFC 1406 DS1/E1 MIB January 1993
 dsx1FarEndTotalTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dsx1FarEndTotalEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The DS1 Far End Total table."
 ::= { ds1 12 }
 dsx1FarEndTotalEntry OBJECT-TYPE
 SYNTAX Dsx1FarEndTotalEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "An entry in the DS1 Far End Total table."
 INDEX { dsx1FarEndTotalIndex }
 ::= { dsx1FarEndTotalTable 1 }
 Dsx1FarEndTotalEntry ::=
 SEQUENCE {
 dsx1FarEndTotalIndex
 INTEGER,
 dsx1FarEndTotalESs
 Gauge,
 dsx1FarEndTotalSESs
 Gauge,
 dsx1FarEndTotalSEFSs
 Gauge,
 dsx1FarEndTotalUASs
 Gauge,
 dsx1FarEndTotalCSSs
 Gauge,
 dsx1FarEndTotalLESs
 Gauge,
 dsx1FarEndTotalPCVs
 Gauge,
 dsx1FarEndTotalBESs
 Gauge,
 dsx1FarEndTotalDMs
 Gauge
 }
 dsx1FarEndTotalIndex OBJECT-TYPE
 SYNTAX INTEGER (1..'7fffffff'h)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The index value which uniquely identifies the
Trunk MIB Working Group [Page 42]

RFC 1406 DS1/E1 MIB January 1993
 DS1 interface to which this entry is applica-
 ble. The interface identified by a particular
 value of this index is the same interface as
 identified by the same value an dsx1LineIndex
 object instance."
 ::= { dsx1FarEndTotalEntry 1 }
 dsx1FarEndTotalESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Errored Seconds encoun-
 tered by a DS1 interface in the previous 24
 hour interval."
 ::= { dsx1FarEndTotalEntry 2 }
 dsx1FarEndTotalSESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Severely Errored Seconds
 encountered by a DS1 interface in the previous
 24 hour interval."
 ::= { dsx1FarEndTotalEntry 3 }
 dsx1FarEndTotalSEFSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Severely Errored Framing
 Seconds encountered by a DS1 interface in the
 previous 24 hour interval."
 ::= { dsx1FarEndTotalEntry 4 }
 dsx1FarEndTotalUASs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Unavailable Seconds encountered
 by a DS1 interface in the previous 24 hour in-
Trunk MIB Working Group [Page 43]

RFC 1406 DS1/E1 MIB January 1993
 terval."
 ::= { dsx1FarEndTotalEntry 5 }
 dsx1FarEndTotalCSSs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Controlled Slip Seconds
 encountered by a DS1 interface in the previous
 24 hour interval."
 ::= { dsx1FarEndTotalEntry 6 }
 dsx1FarEndTotalLESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Line Errored Seconds en-
 countered by a DS1 interface in the previous 24
 hour interval."
 ::= { dsx1FarEndTotalEntry 7 }
 dsx1FarEndTotalPCVs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Far End Path Coding Violations
 reported via the far end block error count en-
 countered by a DS1 interface in the previous 24
 hour interval."
 ::= { dsx1FarEndTotalEntry 8 }
 dsx1FarEndTotalBESs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Bursty Errored Seconds (BESs)
 encountered by a DS1 interface in the previous
 24 hour interval."
 ::= { dsx1FarEndTotalEntry 9 }
Trunk MIB Working Group [Page 44]

RFC 1406 DS1/E1 MIB January 1993
 dsx1FarEndTotalDMs OBJECT-TYPE
 SYNTAX Gauge
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The number of Degraded Minutes (DMs) encoun-
 tered by a DS1 interface in the previous 24
 hour interval."
 ::= { dsx1FarEndTotalEntry 10 }
 -- the DS1 Fractional Group
 -- Implementation of this group is mandatory for those
 -- systems dividing a DS1 into channels containing different
 -- data streams that are of local interest. Systems which
 -- are indifferent to data content, such as CSUs, need not
 -- implement it.
 -- The DS1 fractional table identifies which DS1 channels
 -- associated with a CSU are being used to support a
 -- logical interface, i.e., an entry in the interfaces table
 -- from the Internet-standard MIB.
 -- For example, consider an application managing a North
 -- American ISDN Primary Rate link whose division is a 384 kbit/s
 -- H1 "B" Channel for Video, a second H1 for data to a primary
 -- routing peer, and 12 64 kbit/s H0 "B" Channels. Consider that
 -- some subset of the H0 channels are used for voice and the
 -- remainder are available for dynamic data calls.
 -- we count a total of 14 interfaces multiplexed onto the DS1
 -- interface. Six DS1 channels (for the sake of the example,
 -- channels 1..6) are used for Video, six more (7..11 and 13)
 -- are used for data, and the remaining 12 are are in channels
 -- 12 and 14..24.
 -- Let us further imagine that ifIndex 2 is of type DS1 and
 -- refers to the DS1 interface, and that the interfaces layered
 -- onto it are numbered 3..16.
 -- We might describe the allocation of channels, in the
 -- dsx1FracTable, as follows:
 -- dsx1FracIfIndex.2. 1 = 3 dsx1FracIfIndex.2.13 = 4
 -- dsx1FracIfIndex.2. 2 = 3 dsx1FracIfIndex.2.14 = 6
 -- dsx1FracIfIndex.2. 3 = 3 dsx1FracIfIndex.2.15 = 7
 -- dsx1FracIfIndex.2. 4 = 3 dsx1FracIfIndex.2.16 = 8
Trunk MIB Working Group [Page 45]

RFC 1406 DS1/E1 MIB January 1993
 -- dsx1FracIfIndex.2. 5 = 3 dsx1FracIfIndex.2.17 = 9
 -- dsx1FracIfIndex.2. 6 = 3 dsx1FracIfIndex.2.18 = 10
 -- dsx1FracIfIndex.2. 7 = 4 dsx1FracIfIndex.2.19 = 11
 -- dsx1FracIfIndex.2. 8 = 4 dsx1FracIfIndex.2.20 = 12
 -- dsx1FracIfIndex.2. 9 = 4 dsx1FracIfIndex.2.21 = 13
 -- dsx1FracIfIndex.2.10 = 4 dsx1FracIfIndex.2.22 = 14
 -- dsx1FracIfIndex.2.11 = 4 dsx1FracIfIndex.2.23 = 15
 -- dsx1FracIfIndex.2.12 = 5 dsx1FracIfIndex.2.24 = 16
 -- For North American (DS1) interfaces, there are 24 legal
 -- channels, numbered 1 through 24.
 -- For G.704 interfaces, there are 31 legal channels,
 -- numbered 1 through 31. The channels (1..31) correspond
 -- directly to the equivalently numbered time-slots.
 dsx1FracTable OBJECT-TYPE
 SYNTAX SEQUENCE OF Dsx1FracEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "The DS1 Fractional table."
 ::= { ds1 13 }
 dsx1FracEntry OBJECT-TYPE
 SYNTAX Dsx1FracEntry
 ACCESS not-accessible
 STATUS mandatory
 DESCRIPTION
 "An entry in the DS1 Fractional table."
 INDEX { dsx1FracIndex, dsx1FracNumber }
 ::= { dsx1FracTable 1 }
 Dsx1FracEntry ::=
 SEQUENCE {
 dsx1FracIndex
 INTEGER,
 dsx1FracNumber
 INTEGER,
 dsx1FracIfIndex
 INTEGER
 }
 dsx1FracIndex OBJECT-TYPE
 SYNTAX INTEGER (1..'7fffffff'h)
Trunk MIB Working Group [Page 46]

RFC 1406 DS1/E1 MIB January 1993
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The index value which uniquely identifies the
 DS1 interface to which this entry is applica-
 ble. The interface identified by a particular
 value of this index is the same interface as
 identified by the same value an dsx1LineIndex
 object instance."
 ::= { dsx1FracEntry 1 }
 dsx1FracNumber OBJECT-TYPE
 SYNTAX INTEGER (1..31)
 ACCESS read-only
 STATUS mandatory
 DESCRIPTION
 "The channel number for this entry."
 ::= { dsx1FracEntry 2 }
 dsx1FracIfIndex OBJECT-TYPE
 SYNTAX INTEGER (1..'7fffffff'h)
 ACCESS read-write
 STATUS mandatory
 DESCRIPTION
 "An index value that uniquely identifies an in-
 terface. The interface identified by a partic-
 ular value of this index is the same interface
 as identified by the same value an ifIndex ob-
 ject instance. If no interface is currently us-
 ing a channel, the value should be zero. If a
 single interface occupies more than one time
 slot, that ifIndex value will be found in mul-
 tiple time slots."
 ::= { dsx1FracEntry 3 }
 END
5. Acknowledgements
 This document was produced by the Trunk MIB Working Group:
 Tracy Cox Bellcore
 Fred Baker Advanced Computer Communications
 James Watt Newbridge
 Bill Versteeg Versteeg Codeworks
 Steve Buchko Newbridge
Trunk MIB Working Group [Page 47]

RFC 1406 DS1/E1 MIB January 1993
 Greg Celmainis Newbridge
 Kaj Tesink Bellcore
 Al Bryenton Bell Northern Research
 Tom Easterday CIC
 John Labbe Merit Corporation
 Chris Sullivan Gandalf Ltd
 Grant Hall Gandalf Ltd
 Laurence V. Marks, IBM Corp.
 Kurt Hall, Clear Communications Corp.
 Myron Hattig, ADC Kentrox
 Tracy Cox, Bill Versteeg, Myron Hattig, Kurt Hall and Laurence Marks
 especially worked to make the document what it is.
6. References
 [1] Rose M., and K. McCloghrie, "Structure and Identification of
 Management Information for TCP/IP-based internets", STD 16, RFC
 1155, Performance Systems International, Hughes LAN Systems, May
 1990.
 [2] Rose, M., and K. McCloghrie, Editors, "Concise MIB Definitions",
 STD 16, RFC 1212, Performance Systems International, Hughes LAN
 Systems, March 1991.
 [3] McCloghrie K., and M. Rose, "Management Information Base for
 Network Management of TCP/IP-based internets", RFC 1156, Hughes
 LAN Systems, Performance Systems International, May 1990.
 [4] McCloghrie K., and M. Rose, Editors, "Management Information Base
 for Network Management of TCP/IP-based internets", STD 17, RFC
 1213, Performance Systems International, March 1991.
 [5] Case, J., Fedor, M., Schoffstall, M., and J. Davin, "Simple
 Network Management Protocol", STD 15, RFC 1157, SNMP Research,
 Performance Systems International, Performance Systems
 International, MIT Laboratory for Computer Science, May 1990.
 [6] Information processing systems - Open Systems Interconnection -
 Specification of Abstract Syntax Notation One (ASN.1),
 International Organization for Standardization, International
 Standard 8824, December 1987.
 [7] Information processing systems - Open Systems Interconnection -
 Specification of Basic Encoding Rules for Abstract Notation One
 (ASN.1), International Organization for Standardization,
 International Standard 8825, December 1987.
Trunk MIB Working Group [Page 48]

RFC 1406 DS1/E1 MIB January 1993
 [8] AT&T Information Systems, AT&T ESF DS1 Channel Service Unit
 User's Manual, 999-100-305, February 1988.
 [9] AT&T Technical Reference, Requirements for Interfacing Digital
 Terminal Equipment to Services Employing the Extended Superframe
 Format, Publication 54016, May 1988.
 [10] American National Standard for Telecommunications -- Carrier-to-
 Customer Installation - DS1 Metallic Interface, T1.403, February
 1989.
 [11] CCITT Specifications Volume III, Recommendation G.703,
 Physical/Electrical Characteristics of Hierarchical Digital
 Interfaces, July 1988.
 [12] CCITT Specifications Volume III, Recommendation G.704,
 Synchronous frame structures used at primary and secondary
 hierarchical levels, July 1988.
 [13] American National Standard for Telecommunications -- Layer 1 In-
 Service Digital Transmission Performance Monitoring T1M1/92-0xx,
 T1M1.3/92-005R1, April 1992.
 [14] CCITT Specifications Volume IV, Recommendation O.162, Equipment
 To Perform In Service Monitoring On 2048 kbit/s Signals, July
 1988
 [15] CCITT Specifications Volume III, Recommendation G.821, Error
 Performance Of An International Digital Connection Forming Part
 Of An Integrated Services Digital Network, July 1988.
 [16] AT&T Technical Reference, Technical Reference 62411, ACCUNET T1.5
 Service Description And Interface Specification, December 1990.
 [17] CCITT Specifications Volume III, Recommendation G.706, Frame
 Alignment and Cyclic Redundancy Check (CRC) Procedures Relating
 to Basic Frame Structures Defined in Recommendation G.704, July
 1988.
 [18] CCITT Specifications Volume III, Recommendation G.732,
 Characteristics Of Primary PCM Multiplex Equipment Operating at
 2048 kbit/s, July 1988.
Trunk MIB Working Group [Page 49]

RFC 1406 DS1/E1 MIB January 1993
Security Considerations
 Security issues are not discussed in this memo.
Authors' Addresses
 Fred Baker
 Advanced Computer Communications
 315 Bollay Drive
 Santa Barbara, California 93117
 Phone: (805) 685-4455
 EMail: fbaker@acc.com
 James Watt
 Newbridge Networks Corporation
 600 March Road
 Kanata, Ontario
 Canada K2K 2E6
 Phone: (613) 591-3600
 EMail: james@newbridge.com
Trunk MIB Working Group [Page 50]

AltStyle によって変換されたページ (->オリジナル) /