0
$\begingroup$

What is the complexity of the following decision problem?

  • Input: a Turing machine $M$, a word $\vec{w}$, and a unary primitive recursive function $f : \mathbb{N} \to \mathbb{N}$.
  • Output: "yes" if and only if $M$ accepts $w$ in fewer than $f(\vert \vec{w} \vert)$ steps.

What would be the complexity if instead of a "primitive recursive function" we consider an "arithmetical function"?

asked Oct 23 at 12:44
$\endgroup$
10
  • 1
    $\begingroup$ What do you mean by "arithmetical"? And how is $f$ represented by a finite string so that it can be given as an input to a decision problem? $\endgroup$ Commented Oct 23 at 13:30
  • $\begingroup$ If "arithmetical" literally means "given by a formula over $(\mathbb N,0,1,+,\cdot)$", then this has clearly the same complexity as $\mathrm{Th}(\mathbb N)$. E.g., fix $M$ and $w$ that is accepted in one step, and then given a sentence $\phi,ドル let $f$ be the constant function 2ドル$ if $\phi,ドル and 1ドル$ otherwise. $\endgroup$ Commented Oct 23 at 13:42
  • $\begingroup$ What is "the same complexity as Th($\mathbb{N}$)"? $\endgroup$ Commented Oct 23 at 15:21
  • $\begingroup$ I have changed the requirements on the type of functin; hope that this clarifies things! $\endgroup$ Commented Oct 23 at 15:37
  • $\begingroup$ $\mathrm{Th}(\mathbb N)$ (true arithmetic) is one of standard benchmark problems in computability thery. It is equivalent to $\emptyset^{(\omega)},ドル but other than that, there is no simpler explanation of what "is" its complexity. There is no general way how to measure the complexity of highly noncomputable problems other than showing how they relate to other such problems. $\endgroup$ Commented Oct 23 at 16:05

0

Know someone who can answer? Share a link to this question via email, Twitter, or Facebook.

Your Answer

Draft saved
Draft discarded

Sign up or log in

Sign up using Google
Sign up using Email and Password

Post as a guest

Required, but never shown

Post as a guest

Required, but never shown

By clicking "Post Your Answer", you agree to our terms of service and acknowledge you have read our privacy policy.

Start asking to get answers

Find the answer to your question by asking.

Ask question

Explore related questions

See similar questions with these tags.