The problem:
Start with two arrays of strings, a and b, each in alphabetical order, possibly with duplicates. Return the count of the number of strings which appear in both arrays.
commonTwo({"a", "c", "x"}, {"b", "c", "d", "x"})→ 2
commonTwo({"a", "c", "x"}, {"a", "b", "c", "x", "z"})→ 3
commonTwo({"a", "b", "c"}, {"a", "b", "c"})→ 3
I tried to solve the problem with \$O(n)\$ time complexity:
public int commonTwo(String[] a, String[] b) {
int result=0;
String prev="";
for(int i=0,j=0;(i<a.length)&&(j<b.length);)
{
if(a[i].charAt(0)<b[j].charAt(0))
{
i++;
continue;
}
if(a[i].charAt(0)==b[j].charAt(0))
{
if(!(a[i].equals(prev)))
result++;
prev=a[i];
i++; j++;
continue;
}
j++;
}
return result;
}
It seems to be working but the code looks somewhat ugly. Please feel free to review or if you have any other elegant solution would appreciate you include it in the review.
1 Answer 1
Java is not my strong-point, but there are a few things that stand out.
- Spacing is non-standard.
There are unnecessary parentheses, e.g. in
(i<a.length)&&(j<b.length)and
if(!(a[i].equals(prev)))Optional braces should always be included, e.g. in
if(!(a[i].equals(prev))) result++;Statements should always be on separate lines, e.g. don't do
i++; j++;
There is a more elegant solution using a HashSet<String>, which I believe has the same time complexity.
public int commonTwo(String[] a, String[] b) {
Set<String> common = new HashSet<>(Arrays.asList(a));
common.retainAll(new HashSet<>(Arrays.asList(b)));
return common.size();
}
-
\$\begingroup\$ I think retainAll has complexity \$ O(n^2) \$ \$\endgroup\$Anirudh– Anirudh2014年07月15日 09:08:21 +00:00Commented Jul 15, 2014 at 9:08
-
1\$\begingroup\$ @Anirudh as both collections are hash sets,
containsandremoveare \$O(1)\,ドル soretainAllshould be \$O(n)\$. \$\endgroup\$mjolka– mjolka2014年07月15日 09:31:32 +00:00Commented Jul 15, 2014 at 9:31 -
\$\begingroup\$ Humm yeah I stand corrected. \$\endgroup\$Anirudh– Anirudh2014年07月15日 09:34:46 +00:00Commented Jul 15, 2014 at 9:34
-
\$\begingroup\$ BTW what about the space complexity here? \$\endgroup\$Anirudh– Anirudh2014年07月15日 09:37:16 +00:00Commented Jul 15, 2014 at 9:37
-
1\$\begingroup\$ @Anirudh \$O(n + m)\$ auxiliary space, so worse than your \$O(1)\$ solution. \$\endgroup\$mjolka– mjolka2014年07月15日 10:02:41 +00:00Commented Jul 15, 2014 at 10:02
{"a", "a"}, {"a"}be expected to return 1 or 2? What about{"a", "a"}, {"a", "a"}? \$\endgroup\$