OEIS: A167171
A dense number is a number that has exactly as many prime divisors as non-prime divisors (including 1 and itself as divisors). Equivalently, it is either a prime or a product of two distinct primes. The first 100 dense numbers are:
2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 31, 33, 34, 35, 37, 38, 39, 41, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 67, 69, 71, 73, 74, 77, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 103, 106, 107, 109, 111, 113, 115, 118, 119, 122, 123, 127, 129, 131, 133, 134, 137, 139, 141, 142, 143, 145, 146, 149, 151, 155, 157, 158, 159, 161, 163, 166, 167, 173, 177, 178, 179, 181, 183, 185, 187, 191, 193, 194
Given a nonnegative integer n, output dense(n). n may be 0-indexed or 1-indexed.
Reference implementation (Sage)
import itertools
def dense_numbers():
n = 1
while True:
prime_divisors = [x for x in divisors(n) if x.is_prime()]
non_prime_divisors = [x for x in divisors(n) if not x.is_prime()]
if len(prime_divisors) == len(non_prime_divisors):
yield n
n += 1
N = 20
print itertools.islice(dense_numbers(), N, N+1).next()
12 Answers 12
Jelly, 9 bytes
ÆE2Sḍ2μ#Ṫ
Reads from STDIN and uses 1-based indexing. Try it online!
How it works
ÆE2Sḍ2μ#Ṫ Main link. No arguments. Implicit argument: 0
μ# Read an integer n from STDIN and execute the chain to the left for
k = 0, 1, 2, ... until n of them return a truthy value.
Return the array of matches.
ÆE Compute the exponents of k's prime factorization.
2 Square each exponent.
S Compute the sum of all squares.
ḍ2 Test if 2 is divisible by the result (true iff the sum is 1 or 2).
Ṫ Tail; extract the last (n-th) matching value of k.
Husk, 13 bytes
!fö`¦2ṁo□しろいしかくLgpN
Explanation
!fö`¦2ṁo□しろいしかくLgpN
N List of natural numbers
fö filtered by the following 4 functions:
gp prime factorization, grouped into equal runs
ṁo□しろいしかくL get length of each run, square and sum
`¦2 is 2 divisible by the sum?
! nth element in filtered list
-
\$\begingroup\$ Divisible by 2 can just be less than 3 \$\endgroup\$Jo King– Jo King2020年10月05日 08:01:30 +00:00Commented Oct 5, 2020 at 8:01
-
\$\begingroup\$ for some reason,
<3still requires an extra increment→at the end, maintaining the same byte count. @JoKing \$\endgroup\$Razetime– Razetime2020年10月05日 08:06:55 +00:00Commented Oct 5, 2020 at 8:06 -
\$\begingroup\$ ah, i guess
<3includes1, which throws off the indexing \$\endgroup\$Jo King– Jo King2020年10月05日 08:14:05 +00:00Commented Oct 5, 2020 at 8:14
Vyxal 3, 13 bytes
kNʎ℗n∆qk±≡∨}i
kNʎ℗n∆qk±≡∨}i
i # index implicit input into
kN # natural numbers
ʎ } # filtered by
℗ # is it prime
∨ # or
n∆q # are its prime exponents
k±≡ # exactly equal to [1, 1]?
💎
Created with the help of Luminespire.
<script type="vyxal3">
kNʎ℗n∆qk±≡∨}i
</script>
<script>
args=[["5"],["15"],["102"]]
</script>
<script src="https://themoonisacheese.github.io/snippeterpreter/snippet.js" type="module"/>
-
\$\begingroup\$ dense(102) =194? I think you have some false positives... Found one, dense(5) = 8, because it has four factors :) It can maybe work if you remove the cubes \$\endgroup\$Weird Glyphs– Weird Glyphs2025年06月27日 13:21:26 +00:00Commented Jun 27 at 13:21
-
1\$\begingroup\$ @WeirdGlyphs d'oh! i always get tripped up by powers of 2. fixed for 1 byte. \$\endgroup\$Themoonisacheese– Themoonisacheese2025年06月27日 13:54:25 +00:00Commented Jun 27 at 13:54
05AB1E, (削除) 12 (削除ここまで) 11 bytes
1-indexed
μ # while counter != input
NÑ # get divisors of current number
p # check if prime
D # duplicate
O # sum one copy
s_O # invert and sum the other copy
Q1⁄2 # if equal increase counter
Brachylog, 17 bytes
:1yt.
1<.=$p#dl<3
Predicate 0 (main predicate)
:1yt.
:1y Find the first (input) solutions of predicate 1
t Last element
. Unify with output
Predicate 1 (auxiliary predicate)
1<.=$p#dl<3
1<. 1 < output
.= assign a value to output
. $p#d output's prime factorization contains no duplicate
l and the length
<3 is less than three
Actually, 12 bytes
All credits to Dennis for his algorithm.
`w♂N;*2%Y`╓N
`w♂N;*2%Y`╓N
` ` define a function
w prime factorization in exponent form:
18 = (2^1)*(3^2) becomes [[2,1],[3,2]]
♂N get the last element (exponent) of each sublist
;* dot-product with self; equivalent to squaring
each item and then taking the sum
2%Y test divisibility by 2
╓ first (input) solutions to the above function
N get the last element.
Axiom, 102 bytes
f(n:PI):PI==(i:=1;repeat(i:=i+1;a:=divisors(i);2*#[x for x in a|prime?(x)]=#a=>(n=1=>break;n:=n-1));i)
ungolf and result
-- 1 base Indexed: return the n_th number i that has 2*#divisorsPrimeOf(i)=#divisors(i)
ff(n:PI):PI==
i:=1
repeat
i:=i+1
a:=divisors(i)
2*#[x for x in a|prime?(x)]=#a=>(n=1=>break;n:=n-1)
i
(3) -> [f(i) for i in 1..23]
(3) [2,3,5,6,7,10,11,13,14,15,17,19,21,22,23,26,29,31,33,34,35,37,38]
Type: List PositiveInteger
PARI/GP, 45 bytes
Simple iteration.
k->n=1;while(k,numdiv(n++)-2*omega(n)||k--);n
If you don't mind using the deprecated & for the shortcut AND operator && you can also do
k->n=1;while(k,numdiv(n++)==2*omega(n)&k--);n
R, 93 Bytes
dense=function(n){a=b=0;for(i in which(!n%%1:n))if(which(!i%%2:i)+1==i)a=a+1 else b=b+1;a==b}
It has a tendency to throw a warning. Its not really a problem. Allowing the warning saves me 5 bytes.
Ungolfed
dense=function(n){
a=b=0 #Initializing
factors = which(!n%%1:n) #Finds all factors
for(i in factors) #Loops through factors
prime = which(!i%%2:i)+1==i #Tests if current factor is prime. If it is -- the first term in this vector will be TRUE. Otherwise, it will be false.
if (prime) a=a+1 else b=b+1 #If first term is true, add 1 to a. Else add one to b.
return(a==b) #Test equality of a and b.
}
-
\$\begingroup\$ Can't you use the
+=operator to save 2 bytes? \$\endgroup\$R. Kap– R. Kap2016年08月16日 17:21:57 +00:00Commented Aug 16, 2016 at 17:21 -
\$\begingroup\$ Sadly, R doesn't have any useful incrementation operators like
+=ora++. Sometimes there can be shorter ways (taking advantage of loop structure mostly), but I don't know of one here. \$\endgroup\$user5957401– user59574012016年08月16日 17:41:56 +00:00Commented Aug 16, 2016 at 17:41
PHP, 118 Bytes
for($i=1;!$o=$s[$argn];$r[2]?:$t+=2*$$i=1,$t?:$s[]=$i)for($t=0,$r=[],$n=++$i;$n;$n--)$i%$n?:$t+=${$r[]=$n}?:-1;echo$o;
n? \$\endgroup\$