Minimum Scalar Product
The inspiration for this code golf problem is from Google's code jam competition. The premise behind the problem is, given the input of two vectors of varying lengths, find the minimum possible scalar. A scalar can be found using the following formula:
x1 * y1 + x2 * y2 + ... + xn * yn
The problem, however, is that multiple values for the scalar can be found depending on the order of the numerals in the input case (seen below). Your goal is to determine the minimum possible scalar integer solution by plugging in the input case numbers into the equation and solving for it. You may use every number in the input only once, and must use all of the numbers.
Allow me to provide an example with the following vectors.
Input
3
1 3 -5
-2 4 1
Output
-25
The first integer on the line represents the number of numbers, n, in each vector. In this case, we have three numbers in each vector.
The number n may vary with each test case, but there will always be two vectors.
In the example input, the minimum scalar product would be -25.
(-5 * 4) + (1 * 1) + (3 * -2) = 25
Rules
- You may only use each integer in both vectors once.
- You must use all integers in the vectors.
- Your output must only include the final product
- I'll select the solution with the least amount of code, which follows all of the specifications listed above, in any language!
Hint: You don't need to brute force this problem, unless it makes your code shorter. There is a specific method involved in finding the minimum spanning scalar :).
-
\$\begingroup\$ I really don't want to spoil for anybody, so don't open this unless you already know the answer. this is so well-known it's funny. en.m.wikipedia.org/wiki/Rearrangement_inequality \$\endgroup\$proud haskeller– proud haskeller2016年03月13日 08:15:42 +00:00Commented Mar 13, 2016 at 8:15
20 Answers 20
Jelly, 6 bytes
×ばつṢ}S
Using brute force is equally short:
×ばつS€Ṃ
How it works
×ばつṢ}S Main link. Arguments: u (vector), v (vector)
Ṣ Sort the components of u.
Ṛ Reverse.
Ṣ} Sort the components of v.
×ばつ Multiply the results, element by element.
S Compute the sum of the products.
Seriously, 6 bytes
,SR,S*
Explanation:
,SR,S*
,SR input first vector, sort, reverse
,S input second vector, sort
* dot product
APL, 15 bytes
×ばつ⍵[⍋⍵]}
This is a dyadic function that accepts arrays on the left and right and returns an integer. It uses the same approach as my Julia answer: dot product of the sorted arrays, one descending and one ascending.
MATL, 6 bytes
Code:
SiSP*s
My first MATL answer :)
Explanation:
S # Sort the first array
iS # Take the second array and sort it
P # Flip the array
* # Multiply both arrays with each other
s # Sum of the result
-
1\$\begingroup\$ I'm glad to see this! :-) \$\endgroup\$Luis Mendo– Luis Mendo2016年03月12日 10:05:47 +00:00Commented Mar 12, 2016 at 10:05
Mathematica, (削除) 30 (削除ここまで) 17 bytes
-13 bytes by murphy
Sort@#.-Sort@-#2&
Function, input is vector1(list),vector2(list) Several revisions:
Plus@@(Sort@#*Reverse@Sort@#2)&(*me*)
Total[Sort@#*Reverse@Sort@#2]&
Sort@#.Reverse@Sort@#2& (*alephalpha*)
Sort@#.Sort[#2,#>#2&]& (*murphy*)
Sort@#.SortBy[#2,-#&] (*me*)
Sort@#.-Sort@-#2& (*murphy*)
-
\$\begingroup\$ clever solution! \$\endgroup\$baseman101– baseman1012016年03月12日 04:49:36 +00:00Commented Mar 12, 2016 at 4:49
-
2\$\begingroup\$
Sort@#.Reverse@Sort@#2&\$\endgroup\$alephalpha– alephalpha2016年03月12日 06:36:14 +00:00Commented Mar 12, 2016 at 6:36 -
\$\begingroup\$
Sort@#.Sort[#2,#>#2&]&\$\endgroup\$murphy– murphy2016年03月12日 21:21:16 +00:00Commented Mar 12, 2016 at 21:21 -
1\$\begingroup\$
Sort@#.-Sort@-#2&\$\endgroup\$murphy– murphy2016年03月12日 21:33:15 +00:00Commented Mar 12, 2016 at 21:33 -
\$\begingroup\$ Or for your solution 1,
Sort@#.SortBy[#2,-#&]\$\endgroup\$CalculatorFeline– CalculatorFeline2016年03月12日 21:45:57 +00:00Commented Mar 12, 2016 at 21:45
Julia, (削除) 32 (削除ここまで) 25 bytes
x->y->-sort(-x)⋅sort(y)
This is an anonymous function that accepts two arrays and returns an integer. To call it, assign it to a variable and do f(x)(y).
For inputs x and y, we simply compute the dot product of x sorted in reverse order with y sorted. We get x in reverse sorted order by negating all values, sorting, then negating again.
Saved 7 bytes thanks to Dennis!
Javascript ES6, 69 bytes
a=>b=>a.sort((x,y)=>x-y).map((x,y)=>i+=b.sort((x,y)=>y-x)[y]*x,i=0)|i
Wow, this is way too long.
-
\$\begingroup\$ I think trying to reuse the sort function is costing you 3 bytes. \$\endgroup\$Neil– Neil2016年03月12日 20:35:51 +00:00Commented Mar 12, 2016 at 20:35
-
\$\begingroup\$ I did more golfing. Better? \$\endgroup\$Mama Fun Roll– Mama Fun Roll2016年03月12日 20:43:01 +00:00Commented Mar 12, 2016 at 20:43
-
\$\begingroup\$ You can probably save a byte with
|iinstead of&&i\$\endgroup\$ETHproductions– ETHproductions2016年03月13日 01:36:11 +00:00Commented Mar 13, 2016 at 1:36 -
\$\begingroup\$ Thx @ETHproductions \$\endgroup\$Mama Fun Roll– Mama Fun Roll2016年03月13日 01:38:08 +00:00Commented Mar 13, 2016 at 1:38
-
\$\begingroup\$ Yes, that's what I was thinking of. \$\endgroup\$Neil– Neil2016年03月13日 10:58:43 +00:00Commented Mar 13, 2016 at 10:58
Perl 6, (削除) 33 (削除ここまで) 30 bytes
{sum @^a.sort Z*@^b.sort.reverse}
-
\$\begingroup\$ Why not
{sum @^a.sort Z*[R,] @^b.sort}((1,3,-5),(-2,4,1)).say\$\endgroup\$Aleks-Daniel Jakimenko-A.– Aleks-Daniel Jakimenko-A.2016年05月08日 15:16:09 +00:00Commented May 8, 2016 at 15:16
C++, 124 bytes
#include<algorithm>
int m(int*a,int*b,int n){std::sort(a,a+n);std::sort(b,b+n);int r=0;while(--n>=0)r+=a[n]**b++;return r;}
ungolfed:
#include<algorithm>
int m(int*a,int*b,int n){
std::sort(a,a+n);
std::sort(b,b+n);
int r=0;
while(--n>=0)
r+=a[n]*(*b++);
return r;
}
At first i used std::greater<int>() for the sort in b but just reversing the order in the summation is easier.
Haskell, 59 bytes
import Data.List
v?u=sum$zipWith(*)(sort v)$reverse$sort u
Python 3, 136 bytes
def mdp(n, a, b):
a = list(reversed(sorted(a)))
b = sorted(b)
res = sum([a[i] * b[i] for i in range(len(a))])
return res
-
2\$\begingroup\$ You can save a few bytes by removing spaces next to equals, for instance
b = sorted(b)turns intob=sorted(b)(2 bytes saved). You can additionally put multiple statements on the same line by separating them with a semicolon, for instancea=list(reversed(sorted(a)));b=sorted(b);res=0\$\endgroup\$charredgrass– charredgrass2016年07月13日 04:01:19 +00:00Commented Jul 13, 2016 at 4:01 -
\$\begingroup\$ @charredgrass I'm new here. What's the need to save every possible byte? I was trying to make it readable. \$\endgroup\$rebelliard– rebelliard2016年07月13日 04:02:27 +00:00Commented Jul 13, 2016 at 4:02
-
1\$\begingroup\$ Welcome to PPCG then! This question is a code-golf competition where the goal is to write code to complete the challenge in the fewest bytes possible, which usually means less readable code. \$\endgroup\$charredgrass– charredgrass2016年07月13日 04:21:18 +00:00Commented Jul 13, 2016 at 4:21
-
\$\begingroup\$ @charredgrass got it! \$\endgroup\$rebelliard– rebelliard2016年07月13日 04:30:51 +00:00Commented Jul 13, 2016 at 4:30
-
2\$\begingroup\$ Much shorter:
lambda a,b,s=sorted:sum(x*y for x,y in zip(s(a)[::-1],s(b))). We don't require function submissions to be named (so an unnamed lambda is valid), and thenparameter is unnecessary (many other submissions omit it entirely). \$\endgroup\$user45941– user459412016年07月13日 05:40:23 +00:00Commented Jul 13, 2016 at 5:40
RETURN, 29 bytes
×ばつ␌]#}␁[¤][+]#]
Replace any ␆␃␄␇ with their unprintable counterparts.
Anonymous lambda that leaves result on stack2. Usage:
""{1 3 0 5-}""{0 2- 4 ×ばつ␌]#}␁[¤][+]#]!
Explanation
[ ] lambda
{␆␃} sort and reverse first stack
\{␆} sort second stack
␄␅ transpose and flatten
[ ][ ]# while loop
¤\ check if 2 items exist in stack
×ばつ if so, multiply top 2 items
␌ and push to stack2
}␁ switch to stack2
[¤][+]# sum stack2
J, 14 bytes
+/@(*|.)&(/:~)
Uses the same principle as the others.
Explanation
+/@(*|.)&(/:~) Input: x on LHS and y on RHS
&(/:~) Sort both x and y
|. Reverse the sorted y
* Multiply the sorted x and reversed sorted y elementwise
+/@ Reduce the products using addition and return
JavaScript (Node.js), 62 bytes
a=>a.map(x=>x.sort((x,y)=>x-y))[i=0].map(x=>i+=a[1].pop()*x)|i
Based on Mama Fun Roll's
-4B by Shaggy by switching Input format