Pretty simple challenge today:
Write a program or function that takes in a positive integer N and prints or returns a sorted list of the unique numbers that appear in the multiplication table whose row and column multiplicands both range from 1 to N inclusive.
The list may be sorted in ascending order (smallest to largest) or descending order (largest to smallest), and may be output in any reasonable format.
The shortest code in bytes wins!
Example
When N = 4, the multiplication table looks like:
1 2 3 4
-----------
1| 1 2 3 4
|
2| 2 4 6 8
|
3| 3 6 9 12
|
4| 4 8 12 16
The unique numbers in the table are 1, 2, 3, 4, 6, 8, 9, 12, 16. These are already sorted, so
1, 2, 3, 4, 6, 8, 9, 12, 16
might be your exact output for N = 4. But since the sorting can be reversed and there's some leeway in the formatting, these would also be valid outputs:
[16,12,9,8,6,4,3,2,1]
1
2
3
4
6
8
9
12
16
16 12 9 8 4 3 2 1
Test Cases
N=1 -> [1]
N=2 -> [1, 2, 4]
N=3 -> [1, 2, 3, 4, 6, 9]
N=4 -> [1, 2, 3, 4, 6, 8, 9, 12, 16]
N=5 -> [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25]
N=6 -> [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 18, 20, 24, 25, 30, 36]
N=7 -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 28, 30, 35, 36, 42, 49]
N=8 -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 28, 30, 32, 35, 36, 40, 42, 48, 49, 56, 64]
N=9 -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 54, 56, 63, 64, 72, 81]
N=10 -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 15, 16, 18, 20, 21, 24, 25, 27, 28, 30, 32, 35, 36, 40, 42, 45, 48, 49, 50, 54, 56, 60, 63, 64, 70, 72, 80, 81, 90, 100]
N=11 -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 77, 80, 81, 88, 90, 99, 100, 110, 121]
N=12 -> [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 20, 21, 22, 24, 25, 27, 28, 30, 32, 33, 35, 36, 40, 42, 44, 45, 48, 49, 50, 54, 55, 56, 60, 63, 64, 66, 70, 72, 77, 80, 81, 84, 88, 90, 96, 99, 100, 108, 110, 120, 121, 132, 144]
-
\$\begingroup\$ So basically, the code returns a list of numbers in the multiplication table specified by N, except any number cannot be repeated? \$\endgroup\$TanMath– TanMath2015年11月28日 05:27:46 +00:00Commented Nov 28, 2015 at 5:27
-
\$\begingroup\$ How big can N be? \$\endgroup\$xsot– xsot2015年11月28日 07:39:47 +00:00Commented Nov 28, 2015 at 7:39
-
1\$\begingroup\$ @xsot You can assume N*N will be less than your language's maximum usual int value (probably 2^31-1) \$\endgroup\$Calvin's Hobbies– Calvin's Hobbies2015年11月28日 07:42:50 +00:00Commented Nov 28, 2015 at 7:42
-
\$\begingroup\$ So essentially this is 1-n and non primes up to n^2. \$\endgroup\$gregsdennis– gregsdennis2015年11月30日 02:28:47 +00:00Commented Nov 30, 2015 at 2:28
-
1\$\begingroup\$ @gregsdennis No. There are plenty of composites not present. e.g. 91, 92, 93, 94, 95, 96 for N = 10. \$\endgroup\$Calvin's Hobbies– Calvin's Hobbies2015年11月30日 02:44:06 +00:00Commented Nov 30, 2015 at 2:44
53 Answers 53
Pyth, 8 bytes
S{*M^SQ2
Explanation: SQ takes the evaluated list input (Q) and makes a list [1, 2, ..., Q]. ^SQ2 takes the Cartesian product of that list with itself - all possible product combinations. *M multiplies all these pairs together to form all possible results in the multiplication table and S{ makes it unique and sorts it.
-
\$\begingroup\$ @FryAmTheEggman Input 5 already needs sorting, otherwise the 10 and 9 in the output are out of order. \$\endgroup\$Reto Koradi– Reto Koradi2015年11月28日 16:50:16 +00:00Commented Nov 28, 2015 at 16:50
-
\$\begingroup\$ darn keep on forgetting about that splatting on
M. +1 \$\endgroup\$Maltysen– Maltysen2015年11月29日 21:59:14 +00:00Commented Nov 29, 2015 at 21:59
Python 2, (削除) 61 (削除ここまで) 51 bytes
lambda n:sorted({~(i%n)*~(i/n)for i in range(n*n)})
Thanks to xnor for shortening some syntax.
-
1\$\begingroup\$ The
set(...)can just be a set comp{...}. Also, functions are allowed by default here, so you can just writelambda n:.... \$\endgroup\$xnor– xnor2015年11月28日 07:03:51 +00:00Commented Nov 28, 2015 at 7:03 -
\$\begingroup\$ Thanks for reminding me about set comprehension, I completely forgot it existed. \$\endgroup\$xsot– xsot2015年11月28日 07:09:44 +00:00Commented Nov 28, 2015 at 7:09
-
\$\begingroup\$ I can't see a better way to do this, best I see with recursion is 56:
f=lambda n:n*[0]and sorted(set(range(n,n*n+n,n)+f(n-1))). \$\endgroup\$xnor– xnor2015年11月28日 07:22:28 +00:00Commented Nov 28, 2015 at 7:22
APL, (削除) 18 (削除ここまで) 16 bytes
×ばつ⍨⍳⍵]}
This is an unnamed monadic function. The output is in ascending order.
Explanation:
⍳⍵]} ⍝ Get the integers from 1 to the input
×ばつ⍨ ⍝ Compute the outer product of this with itself
, ⍝ Flatten into an array
∪ ⍝ Select unique elements
y← ⍝ Assign to y
{y[⍋ ⍝ Sort ascending
Fixed an issue and saved 2 bytes thanks to Thomas Kwa!
Octave, 22 bytes
@(n)unique((a=1:n)'*a)
Julia, 24 bytes
n->sort(∪((x=1:n)*x'))
This is an anonymous function that accepts an integer and returns an integer array.
Ungolfed:
function f(n::Integer)
# Construct a UnitRange from 1 to the input
x = 1:n
# Compute the outer product of x with itself
o = x * transpose(x)
# Get the unique elements, implicitly flattening
# columnwise into an array
u = unique(o)
# Return the sorted output
return sort(u)
end
CJam, (削除) 14 (削除ここまで) 12 bytes
Latest version with improvements proposed by @aditsu:
{)2m*::*0^$}
This is an anonymous function. Try it online, with input/output code needed for testing it.
@Martin proposed another very elegant solution ({,:)_ff*:|$}) with the same length. I used the one by aditsu because it was much more similar to my original solution.
The main difference to my original solution is that this keeps the 0 value in the original sequence, which saves 2 bytes at the start. You'd think that this would not help, because you have to remove the 0 value from the result. But the core of @aditsu's idea is the 0^ at the end, which is a set difference with 0. This removes the 0, and at the same time, since it's a set operation, eliminates duplicate elements from the solution set. Since I already needed 2 bytes to eliminate the duplicates before, removing the 0 is then essentially free.
Explanation:
{ Start anonymous function.
) Increment to get N+1.
2m* Cartesian power, to get all pairs of numbers in range [0, N].
::* Reduce all pairs with multiplication.
0^ Remove 0, and remove duplicates at the same time since this is a set operation.
$ Sort the list.
} End anonymous function.
-
\$\begingroup\$ For the same length,
{2m*::)::*_&$},{)2m*::*_&0ドル-}\$\endgroup\$Peter Taylor– Peter Taylor2015年11月28日 07:50:17 +00:00Commented Nov 28, 2015 at 7:50 -
2\$\begingroup\$ How about this for two bytes less :)
{,:)_ff*:|$}\$\endgroup\$Martin Ender– Martin Ender2015年11月28日 08:29:33 +00:00Commented Nov 28, 2015 at 8:29 -
1\$\begingroup\$ Another way:
{)2m*::*0^$}\$\endgroup\$aditsu quit because SE is EVIL– aditsu quit because SE is EVIL2015年11月28日 09:01:13 +00:00Commented Nov 28, 2015 at 9:01
R, 39 bytes
cat(unique(sort(outer(n<-1:scan(),n))))
This reads an integer from STDIN and writes a space delimited list to STDOUT.
We create the multiplication table as a matrix using outer, implicitly flatten into a vector and sort using sort, select unique elements using unique, and print space delimited using cat.
MATLAB, 24 bytes
@(n)unique((1:n)'*(1:n))
-
\$\begingroup\$ Good one! Soon it will be possible to do it in 7 or 8 bytes... :-) \$\endgroup\$Luis Mendo– Luis Mendo2015年11月29日 23:35:35 +00:00Commented Nov 29, 2015 at 23:35
-
\$\begingroup\$ Oooh, nice! :-) \$\endgroup\$Stewie Griffin– Stewie Griffin2015年11月30日 05:21:06 +00:00Commented Nov 30, 2015 at 5:21
-
\$\begingroup\$ @Luis have you tried this one in MATL? \$\endgroup\$Stewie Griffin– Stewie Griffin2015年11月30日 05:28:18 +00:00Commented Nov 30, 2015 at 5:28
-
\$\begingroup\$ I don't have much time now to read the whole challenge, but seeing your Matlab code it looks like it could be done with MATL \$\endgroup\$Luis Mendo– Luis Mendo2015年11月30日 10:32:59 +00:00Commented Nov 30, 2015 at 10:32
zsh, (削除) 86 (削除ここまで) 56 bytes
thanks to @Dennis for saving 30(!) bytes
(for a in {1..1ドル};for b in {1..1ドル};echo $[a*b])|sort -nu
Explanation / ungolfed:
( # begin subshell
for a in {1..1ドル} # loop through every pair of multiplicands
for b in {1..1ドル}
echo $[a*b] # calculate a * b, output to stdout
) | sort -nu # pipe output of subshell to `sort -nu', sorting
# numerically (-n) and removing duplicates (-u for uniq)
This doesn't work in Bash because Bash doesn't expand {1..1ドル}—it just interprets it literally (so, a=5; echo {1..$a} outputs {1..5} instead of 1 2 3 4 5).
-
1\$\begingroup\$ I was waiting for a *sh answer. :D \$\endgroup\$Addison Crump– Addison Crump2015年11月28日 16:26:26 +00:00Commented Nov 28, 2015 at 16:26
-
1\$\begingroup\$ Relevant bash tip. Seems to apply to the Z shell as well. \$\endgroup\$Dennis– Dennis2015年11月28日 16:33:03 +00:00Commented Nov 28, 2015 at 16:33
-
\$\begingroup\$ You can squeeze a bit more out of brace expansions \$\endgroup\$Digital Trauma– Digital Trauma2015年11月28日 21:49:01 +00:00Commented Nov 28, 2015 at 21:49
Ruby, (削除) 50 (削除ここまで) 48 bytes
->n{c=*r=1..n;r.map{|i|c|=r.map{|j|i*j}};c.sort}
Ungolfed:
->n {
c=*r=1..n
r.map { |i| c|=r.map{|j|i*j} }
c.sort
}
Using nested loop to multiply each number with every other number upto n and then sorting the array.
50 bytes
->n{r=1..n;r.flat_map{|i|r.map{|j|i*j}}.uniq.sort}
Usage:
->n{c=*r=1..n;r.map{|i|c|=r.map{|j|i*j}};c.sort}[4]
=> [1, 2, 3, 4, 6, 8, 9, 12, 16]
Shell + common utilities, 41
seq -f"seq -f%g*%%g 1ドル" 1ドル|sh|bc|sort -nu
Or alternatively:
Bash + coreutils, 48
eval printf '%s\\n' \$[{1..1ドル}*{1..1ドル}]|sort -nu
Constructs a brace expansion inside an arithmetic expansion:
\$[{1..n}*{1..n}] expands to the arithmetic expansions $[1*1] $[1*2] ... $[1*n] ... $[n*n] which are evaluated and passed to printf, which prints one per line, which is piped to sort.
Careful use of quotes, escapes and eval ensure the expansions happen in the required order.
Or alternatively:
Pure Bash, 60
eval a=($(eval echo [\$[{1..1ドル}*{1..1ドル}\]]=1))
echo ${!a[@]}
Haskell, (削除) 55 (削除ここまで) 54 bytes
import Data.List
f n=sort$nub[x*y|x<-[1..n],y<-[1..x]]
Usage example: f 4 -> [1,2,3,4,6,8,9,12,16].
nub removes duplicate elements from a list.
Edit: @Zgarb found a superfluous $.
JavaScript (Node.js), 69 bytes
n=>[...a=Array(i=n*n)].map(x=>a[q=~(--i%n)*~(i/n)]=q)&&a.filter(x=>x)
JavaScript (Node.js), 76 bytes
n=>[...Array(n*n)].flatMap((_,i,x)=>x.every((_,j)=>~(j/n)*~(j%n)+~i)?[]:i+1)
No recursion like other answers
Mathematica, 25 bytes
Union@@Array[1##&,{#,#}]&
K, 17 bytes
t@<t:?,/t*\:t:1+!
Not much to say here. Sort (t@<t:) the unique items (?) of the flattened (,/) multiplied cartesian self-product (t*\:t:) of 1 up to and including N (1+!).
In action:
t@<t:?,/t*\:t:1+!5
1 2 3 4 5 6 8 9 10 12 15 16 20 25
J, (削除) 21 (削除ここまで) 20 bytes
Thanks to @Zgarb for -1 byte!
/:~@~.@,@(1*/~@:+i.)
My first J answer! Golfing tips are appreciated, if there is something to golf.
This is a monadic function; we take the outer product by multiplication of the list 1..input with itself, flatten, take unique elements, and sort.
Kotlin, 70 bytes
val a={i:Int->(1..i).flatMap{(1..i).map{j->it*j}}.distinct().sorted()}
Ungolfed version:
val a: (Int) -> List<Int> = {
i -> (1..i).flatMap{ j -> (1..i).map{ k -> j * k } }.distinct().sorted()
}
Test it with:
fun main(args: Array<String>) {
for(i in 1..12) {
println(a(i))
}
}
Pyt, 7 bytes
řĐɐ*ƑỤş
ř implicit input (n); push [1,2,...,n]
Đ duplicate
ɐ* generate multiplication table
Ƒ flatten array
Ụ get unique elements
ş sort in ascending order; implicit print
Thunno, \$ 12 \log_{256}(96) \approx \$ 9.88 bytes
R1+DZ!.PZU
Explanation
R1+DZ!.PZUz: # Implicit input Example (n=5)
R1+ # [1..input] [1, 2, 3, 4, 5]
DZ! # Cartesian product with itself [[1, 1], [1, 2], [1, 3], [1, 4], [1, 5], [2, 1], [2, 2], [2, 3], [2, 4], [2, 5], [3, 1], [3, 2], [3, 3], [3, 4], [3, 5], [4, 1], [4, 2], [4, 3], [4, 4], [4, 5], [5, 1], [5, 2], [5, 3], [5, 4], [5, 5]]
.P # Product of each inner list [1, 2, 3, 4, 5, 2, 4, 6, 8, 10, 3, 6, 9, 12, 15, 4, 8, 12, 16, 20, 5, 10, 15, 20, 25]
ZU # Uniquified [1, 2, 3, 4, 5, 6, 8, 10, 9, 12, 15, 16, 20, 25]
z: # And sorted [1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 15, 16, 20, 25]
# Implicit output
Screenshot
-
\$\begingroup\$ Try it Online! for 5 or 4.25 bytes \$\endgroup\$2023年07月20日 01:15:36 +00:00Commented Jul 20, 2023 at 1:15
Jelly, 5 bytes
Ṭẋ)ST
) For each x in 1 .. n:
Ṭ Create a list containing 1 at index x and 0s before it,
ẋ and repeat it x times.
S Sum the results element-wise,
T and yield the indices of non-zeros in the result.
Brachylog, 9 bytes
×ばつ∋⟩uo
Explanation
×ばつ∋⟩uo
⟦1 Range from 1 to input number, inclusive
u Get all unique outputs of this predicate:
∋ Pick a number from that range
∋ Pick another number from that range
⟨ ×ばつ ⟩ Multiply them together
o Sort the resulting list
Minkolang 0.14, (削除) 25 (削除ここまで) (削除) 22 (削除ここまで) 18 bytes
I remembered that I very conveniently implemented Cartesian products before this question was posted!
1nLI20P[x*1R]sS$N.
Try it here. (Outputs in reverse order.)
Explanation
1 Push a 1 onto the stack
n Take number from input (n)
L Pushes 1,2,...,n onto the stack
I Pushes length of stack so 0P knows how many items to pop
2 Pushes 2 (the number of repeats)
0P Essentially does itertools.product(range(1,n+1), 2)
[ Open for loop that repeats n^2 times (0P puts this on the stack)
x Dump (I know each product has exactly two numbers
* Multiply
1R Rotate 1 step to the right
] Close for loop
s Sort
S Remove duplicates ("set")
$N. Output whole stack as numbers and stop.
C, 96 bytes
i,a[1<<16];main(n){for(scanf("%d",&n);i<n*n;a[~(i%n)*~(i++/n)]="%d ");while(i)printf(a[i--],i);}
This prints the numbers in descending order. Suggestions are welcomed as this looks far from optimal.
JavaScript (ES6), (削除) 92 (削除ここまで) 90 bytes
n=>eval(`for(r=[],a=n;a;a--)for(b=n;b;)~r.indexOf(x=a*b--)||r.push(x);r.sort((a,b)=>a-b)`)
Explanation
n=>eval(` // use eval to remove need for return keyword
for(r=[],a=n;a;a--) // iterate for each number a
for(b=n;b;) // iterate for each number b
~r.indexOf(x=a*b--) // check if it is already in the list, x = value
||r.push(x); // add the result
r.sort((a,b)=>a-b) // sort the results by ascending value
// implicit: return r
`)
Test
N = <input type="number" oninput="result.innerHTML=(
n=>eval(`for(r=[],a=n;a;a--)for(b=n;b;)~r.indexOf(x=a*b--)||r.push(x);r.sort((a,b)=>a-b)`)
)(+this.value)" /><pre id="result"></pre>
Perl 6, 27 bytes
{squish sort 1..$_ X*1..$_} # 27
{unique sort 1..$_ X*1..$_} # 27
{sort unique 1..$_ X*1..$_} # 27
Example usage:
say {squish sort 1..$_ X*1..$_}(3); # (1 2 3 4 6 9)
my $code = {squish sort 1..$_ X*1..$_}
for 1..100 -> \N { say $code(N) }
my &code = $code;
say code 4; # (1 2 3 4 6 8 9 12 16)
Haskell, 51 bytes
f n=[i|i<-[1..n*n],elem i[a*b|a<-[1..n],b<-[1..n]]]
Pretty boring. Just filters the list [1..n*n] to the elements of the form a*b with a and b in [1..n]. Using filter gives the same length
f n=filter(`elem`[a*b|a<-[1..n],b<-[1..n]])[1..n*n]
I tried for a while to generate the list of products with something more clever like concatMap or mapM, but only got longer results. A more sophisticated check of membership came in at 52 bytes, 1 byte longer, but can perhaps be shortened.
f n=[k|k<-[1..n*n],any(\a->k`mod`a<1&&k<=n*a)[1..n]]
JAVA - 86 Bytes
Set a(int a){Set s=new TreeSet();for(;a>0;a--)for(int b=a;b>0;)s.add(a*b--);return s;}
Ungolfed
Set a(int a){
Set s = new TreeSet();
for (;a>0;a--){
for(int b = a;b>0;){
s.add(a*b--);
}
}
return s;
}