Given a natural number n write a program or function to get a list of all the possible two factors multiplications that can be used to achieve n. To understand better what is pretended you can go to http://factornumber.com/?page=16777216 to see when n is 16777216 we get the following list:
2 ×ばつ 8388608
4 ×ばつ 4194304
8 ×ばつ 2097152
16 ×ばつ 1048576
32 ×ばつ 524288
64 ×ばつ 262144
128 ×ばつ 131072
256 ×ばつ 65536
512 ×ばつ 32768
1024 ×ばつ 16384
2048 ×ばつ 8192
4096 ×ばつ 4096
No need to pretty print things like here. The requirement is that each entry (pair of factors) is well distinguished from each other and inside each pair, the first factor is also well distinguished from the other. If you choose to return a list/array, the inside element can be a list/array with two elements, or some structure of your language that supports a pair of things like C++ std::pair.
Do not print the multiplication by 1 entry, nor repeat entries with the first factor commuted by the second, as they are pretty useless.
No winner; it will be a per language basis code golf.
33 Answers 33
Java (OpenJDK 8), (削除) 81 (削除ここまで) (削除) 66 (削除ここまで) 65 bytes
- -15 Bytes thanks to Olivier Grégoire.
- -1 Byte:
++j<=i/j->j++<i/j.
i->{for(int j=1;j++<i/j;)if(i%j<1)System.out.println(j+" "+i/j);}
Old one (for reference)
Java (OpenJDK 8), 126 bytes
i->{java.util.stream.IntStream.range(2,i).filter(d->d<=i/d&&i%d==0).forEach(e->System.out.println(""+e+"x"+i/e));return null;}
First codegolf submit and first lambda usage. Future self, please forgive me for the code.
-
1\$\begingroup\$ Nice first entry! Welcome to PPCG! Here is it golfed down to 66 bytes by removing all the superfluous: I couldn't golf your algorithm though. \$\endgroup\$Olivier Grégoire– Olivier Grégoire2017年12月04日 14:03:59 +00:00Commented Dec 4, 2017 at 14:03
-
2\$\begingroup\$ +1 from me we have nearly the same solutions. I thought of this 8-byter \$\endgroup\$Mr. Xcoder– Mr. Xcoder2017年12月02日 23:21:00 +00:00Commented Dec 2, 2017 at 23:21
-
\$\begingroup\$ @Mr.Xcoder: Ah yes, nice :) It's too bad that the map is required there. \$\endgroup\$Emigna– Emigna2017年12月03日 08:41:18 +00:00Commented Dec 3, 2017 at 8:41
C (gcc), (削除) 58 (削除ここまで) (削除) 54 (削除ここまで) 53 bytes
- Saved a byte thanks to Steadybox.
f(N,j){for(j=1;j++*j<N;)N%j||printf("|%d,%d",j,N/j);}
-
\$\begingroup\$ Nice. This would appear better in the
"%dx%d "format. \$\endgroup\$sergiol– sergiol2025年03月12日 19:04:17 +00:00Commented Mar 12 at 19:04
Python 2, 51 bytes
f=lambda n,k=2:n/k/k*[f]and[(k,n/k)][n%k:]+f(n,k+1)
51 bytes (thanks to Luis Mendo for a byte)
lambda n:[(n/k,k)for k in range(1,n)if(k*k<=n)>n%k]
51 bytes
lambda n:[(n/k,k)for k in range(1,n)if n/k/k>n%k*n]
-
\$\begingroup\$ I like the use of
[f]. \$\endgroup\$Jonathan Frech– Jonathan Frech2017年12月02日 22:52:25 +00:00Commented Dec 2, 2017 at 22:52 -
1\$\begingroup\$ You can save 1 byte in the second version with
lambda n:[(n/k,k)for k in range(1,n)if(k*k<=n)>n%k]\$\endgroup\$Luis Mendo– Luis Mendo2017年12月03日 02:49:50 +00:00Commented Dec 3, 2017 at 2:49 -
\$\begingroup\$ MemoryError on all approaches for 1512518520 \$\endgroup\$sergiol– sergiol2017年12月05日 00:37:51 +00:00Commented Dec 5, 2017 at 0:37
Perl 6, 38 bytes
{map {$^a,$_/$a},grep $_%%*,2.. .sqrt}
Expanded:
{ # bare block lambda with implicit parameter 「$_」
map
{ $^a, $_ / $a }, # map the number with the other factor
grep
$_ %% *, # is the input divisible by *
2 .. .sqrt # from 2 to the square root of the input
}
Brachylog, 8 bytes
×ばつ≜Ċo}u
Explanation
×ばつ≜Ċo}u
{ }u List the unique outputs of this predicate.
×ばつ Pick a list of integers whose product is the input.
≜ Force concrete values for its elements.
Ċ Force its length to be 2.
o Sort it and output the result.
The ×ばつ part does not include 1s in its output, so for input N it gives [N] instead of [1,N], which is later culled by Ċ.
I'm not entirely sure why ≜ is needed...
-
1\$\begingroup\$ The
≜is needed because otherwise there are no choice points foru: a length-2 list whose product is the input is the only answer if you don't actually ask for the values of the list. \$\endgroup\$Fatalize– Fatalize2017年12月04日 07:01:21 +00:00Commented Dec 4, 2017 at 7:01
Japt, 9 bytes
â¬Å£[XZo]
Test it online! Returns an array of arrays, with some nulls at the end; -R flag added to show output more clearly.
-
1\$\begingroup\$ So I think the ` -R` should be considered for the byte count... \$\endgroup\$sergiol– sergiol2017年12月02日 23:41:03 +00:00Commented Dec 2, 2017 at 23:41
-
3\$\begingroup\$ @sergiol, no, in this case it's just for formatting the output for better readability. \$\endgroup\$Shaggy– Shaggy2017年12月03日 11:07:55 +00:00Commented Dec 3, 2017 at 11:07
-
\$\begingroup\$ Exactly the solution I had, except I filtered the
nulls out at the end. \$\endgroup\$Shaggy– Shaggy2017年12月03日 11:08:57 +00:00Commented Dec 3, 2017 at 11:08
Jelly, 8 bytes
1⁄2ḊpP=\Ðf
A monadic link taking a number and returning a list of lists (pairs) of numbers.
Try it online! (times out on TIO for the 16777216 example since it would create a list of 68.7 billion pairs and filter down to those with the correct product!)
How?
1⁄2ḊpP=\Ðf - Link: number, n e.g. 144
1⁄2 - square root of n 12
Ḋ - dequeue* [2,3,4,5,6,7,8,9,10,11,12]
p - Cartesian product** [[2,1],[2,2],...[2,144],[3,1],...,[3,144],...,[12,144]
Ðf - filter keep if:
\ - last two links as a dyad (n is on the right):
P - product
= - equals
- [[2,72],[3,48],[4,36],[6,24],[8,18],[9,16],[12,12]]
* Ḋ, dequeue, implicitly makes a range of a numeric input prior to acting, and the range function implicitly floors its input, so with, say, n=24 the result of 1⁄2 is 4.898...; the range becomes [1,2,3,4]; and the dequeued result is [2,3,4]
** Similarly to above, p, Cartesian product, makes ranges for numeric input - here the right argument is n hence the right argument becomes [1,2,3,...,n] prior to the actual Cartisian product taking place.
Husk, 8 bytes
tüOSze↔Ḋ
Explanation
tüOSze↔Ḋ Implicit input, say n=30.
Ḋ List of divisors: [1,2,3,5,6,10,15,30]
↔ Reverse: [30,15,10,6,5,3,2,1]
Sze Zip with original: [[1,30],[2,15],[3,10],[5,6],[6,5],[10,3],[15,2],[30,1]]
üO Deduplicate by sort: [[1,30],[2,15],[3,10],[5,6]]
t Drop first pair: [[2,15],[3,10],[5,6]]
JavaScript (ES6), 55 bytes
n=>eval('for(k=1,a=[];k*++k<n;n%k||a.push([k,n/k]));a')
Demo
let f =
n=>eval('for(k=1,a=[];k*++k<n;n%k||a.push([k,n/k]));a')
console.log(JSON.stringify(f(6)))
console.log(JSON.stringify(f(7)))
console.log(JSON.stringify(f(16777216)))
-
\$\begingroup\$ Is it me or does this fail for
6? \$\endgroup\$Neil– Neil2017年12月04日 10:33:39 +00:00Commented Dec 4, 2017 at 10:33 -
\$\begingroup\$ @Neil "We can fix it." (Thanks for reporting!) \$\endgroup\$Arnauld– Arnauld2017年12月04日 10:41:55 +00:00Commented Dec 4, 2017 at 10:41
-
\$\begingroup\$ How can I supply a number to test? \$\endgroup\$sergiol– sergiol2017年12月05日 21:41:39 +00:00Commented Dec 5, 2017 at 21:41
-
\$\begingroup\$ You can Try it online! \$\endgroup\$Arnauld– Arnauld2017年12月05日 21:47:36 +00:00Commented Dec 5, 2017 at 21:47
-
\$\begingroup\$ tio.run/##FcnRCoMgFAbgVzk3AwVh84AQsu0RfIHqwig3YfsNk2BEz27r7oNv/… — Memory error? \$\endgroup\$sergiol– sergiol2017年12月05日 00:30:49 +00:00Commented Dec 5, 2017 at 0:30
-
\$\begingroup\$ @sergiol Yes, a MemoryError, since Python tries to evaluate
range(2,N)and store it as a list, yet the allocated memory does not suffice. One could try replacerangewithxrange(Python 2's range generator), though this exceeds TIO's one minute of maximum runtime. On a machine with enough memory and time, this program should terminate and return the correct answer. \$\endgroup\$Jonathan Frech– Jonathan Frech2017年12月05日 16:01:21 +00:00Commented Dec 5, 2017 at 16:01
PHP, 70 bytes
As string (70 bytes):
$i++;while($i++<sqrt($a=$argv[1])){echo !($a%$i)?" {$i}x".($a/$i):'';}
As array dump (71 bytes):
$i++;while($i++<sqrt($a=$argv[1]))!($a%$i)?$b[$i]=$a/$i:'';print_r($b);
(im not sure if i can use return $b; instead of print_r since it no longer outputs the array, otherwise i can save 2 bytes here. )
The array gives the results like:
Array
(
[2] => 8388608
[4] => 4194304
[8] => 2097152
[16] => 1048576
-
\$\begingroup\$ "If you choose to return a list/array" To me it means you can print or return as you see fit. \$\endgroup\$fede s.– fede s.2017年12月04日 06:17:39 +00:00Commented Dec 4, 2017 at 6:17
-
\$\begingroup\$ On second thought, returning should be valid for a function, and printing for a program. You seem to have a snippet/program, not a function, so I'd say in this case you should be printing. \$\endgroup\$fede s.– fede s.2017年12月04日 06:20:28 +00:00Commented Dec 4, 2017 at 6:20
Wolfram Language (Mathematica), 41 bytes
nRest@Union[Sort@{#,n/#}&/@Divisors@n]
is the Function operator, which introduces an unnamed function with named parameter n.
Factor, 58
Well, there has to be some Factor in this question!
[ divisors dup reverse zip dup length 1 + 2 /i head rest ]
It's a quotation. call it with the number on the stack, leaves an assoc (an array of pairs) on the stack.
I'm never sure if all the imports count or not, as they're part of the language. This one uses:
USING: math.prime.factors sequences assocs math ;
(If they count, I should look for a longer solution with shorter imports, which is kind of silly)
As a word:
: 2-factors ( x -- a ) divisors dup reverse zip dup length 1 + 2 /i head rest ;
50 2-factors .
--> { { 2 25 } { 5 10 } }
Ruby, 43 bytes
->n{(2..n**0.5).map{|x|[[x,n/x]][n%x]}-[p]}
How it works:
For every number up to sqrt(n), generate the pair [[x, n/x]], then take the n%xth element of this array. If n%x==0 this is [x, n/x], otherwise it's nil. when done, remove all nil from the list.
Pari/GP, (削除) 49 (削除ここまで) (削除) 34 (削除ここまで) 38 bytes
n->[[d,n/d]|d<-divisors(n),d>1&d<=n/d]
Set builder notation for all pairs [d, n/d] where d runs through all divisors d of n subject to d > 1 and d <= n/d.
Huge improvement by alephalpha.
-
1\$\begingroup\$
n->[[d,n/d]|d<-divisors(n),d<=n/d]\$\endgroup\$alephalpha– alephalpha2017年12月28日 00:36:55 +00:00Commented Dec 28, 2017 at 0:36 -
\$\begingroup\$ @alephalpha Good one. But had to change it a bit because it output also the factorization with
1. \$\endgroup\$Jeppe Stig Nielsen– Jeppe Stig Nielsen2017年12月28日 10:13:28 +00:00Commented Dec 28, 2017 at 10:13
Perl 5, 53 + 2 (-p flag) = 55 bytes
$_="@{[map{$_,$n/$_.$/}grep!($n%$_),2..sqrt($n=$_)]}"
Ungolfed:
while (defined $_ = <>) {
$n = $_;
$_ = qq(@{[
map{ ($_, ($n / $_) . "\n") } grep { !($n % $_) } (2 .. sqrt($n))
]});
print($_);
}
-
\$\begingroup\$ 7 bytes \$\endgroup\$Aaroneous Miller– Aaroneous Miller2021年08月30日 20:18:34 +00:00Commented Aug 30, 2021 at 20:18
-
\$\begingroup\$ @AaronMiller Nice use of
~:) \$\endgroup\$emanresu A– emanresu A2021年08月30日 20:19:28 +00:00Commented Aug 30, 2021 at 20:19
Husk, (削除) 14 (削除ここまで) 12 bytes
tumoOSe`/0Ḋ0
Explanation
tum(OSe`/0)Ḋ0 -- input 0, eg. 30
Ḋ0 -- divisors [1..0]: [1,2,3,5,6,10,15,30]
m( ) -- map the following function (example on 10):
Se -- create list with 10 and ..
`/0 -- .. flipped division by 0 (30/10): [10,3]
O -- sort: [3,10]
-- [[1,30],[2,15],[3,10],[5,6],[5,6],[3,10],[2,15],[1,30]]
u -- remove duplicates: [[1,30],[2,15],[3,10],[5,6]]
t -- tail: [[2,15],[3,10],[5,6]]
APL+WIN, 32 bytes
m,[.1]n÷m←(0=m|n)/m←1↓⍳⌊(n←⎕)*.5
Explanation:
(n←⎕) Prompts for screen input
m←(0=m|n)/m←1↓⍳⌊(n←⎕)*.5 Calculates the factors dropping the first
m,[.1]n÷ Identifies the pairs and concatenates into a list.
Add++, (削除) 18 (削除ここまで) 15 bytes
L,F@pB]dBRBcE#S
How it works
L, - Create a lambda function
- Example argument: 30
F - Factors; STACK = [1 2 3 5 6 10 15]
@ - Reverse; STACK = [15 10 6 5 3 2 1]
p - Pop; STACK = [15 10 6 5 3 2]
B] - Wrap; STACK = [[15 10 6 5 3 2]]
d - Duplicate; STACK = [[15 10 6 5 3 2] [15 10 6 5 3 2]]
BR - Reverse; STACK = [[15 10 6 5 3 2] [2 3 5 6 10 15]]
Bc - Zip; STACK = [[15 2] [10 3] [6 5] [5 6] [3 10] [2 15]]
E# - Sort each; STACK = [[2 15] [3 10] [5 6] [5 6] [3 10] [2 15]]
S - Deduplicate; STACK = [[[2 15] [3 10] [5 6]]]
Julia 0.6, 41 bytes
~x=[(y,div(x,y))for y=2:x if x%y<1>y^2-x]
Redefines the inbuild unary operator ~ and uses an array comprehension to build the output.
div(x,y)is neccessary for integer division.x/ysaves 5 bytes but the output is~4=(2,2.0).- Julia allows chaining the comparisons, saving one byte.
- Looping all the way to x avoids
Int(floor(√x)).
APL NARS 99 chars
r←f w;i;h
r←⍬⋄i×ばつ⍳w≠+w
A:i×ばつ⍳∼0=i×ばつ⍳i>h←w÷i⋄r←r,⊂i h⋄→A
9+46+41+3=99 Test: (where not print nothing, it return something it return ⍬ the list null one has to consider as "no solution")
f 101
f 1 2 3
f '1'
f '123'
f 33 1.23
f 1.23
⎕←⊃f 16777216
2 8388608
4 4194304
8 2097152
16 1048576
32 524288
64 262144
128 131072
256 65536
512 32768
1024 16384
2048 8192
4096 4096
f 123
3 41
30? \$\endgroup\$