Write a program that displays on the screen the sum of the divisors of a number (1 ≤ N ≤ 100) entered by the user in the range of 1 to N.
This is OEIS A000203.
Examples:
Input: 7
7 / 1 = 7
7 / 7 = 1
7 + 1 = 8
Output: 8
Input: 15
15 / 1 = 15
15 / 3 = 5
15 / 5 = 3
15 / 15 =わ 1
15 +たす 5 +たす 3 +たす 1 =わ 24
Output: 24
Input: 20
20 / 1 = 20
20 / 2 = 10
20 / 4 = 5
20 / 5 = 4
20 / 10 = 2
20 / 20 =わ 1
20 +たす 10 +たす 5 +たす 4 +たす 2 +たす 1 =わ 42
Output: 42
Input: 1
1 / 1 = 1
Output: 1
Input: 5
5 / 1 = 5
5 / 5 = 1
5 + 1 = 6
Output: 6
-
6\$\begingroup\$ @H.PWiz I think he means "the divisors of a number N" \$\endgroup\$benzene– benzene2017年09月08日 00:18:47 +00:00Commented Sep 8, 2017 at 0:18
-
\$\begingroup\$ I think you mean sum of divisors, aka, the sigma function? \$\endgroup\$Stephen– Stephen2017年09月08日 00:18:48 +00:00Commented Sep 8, 2017 at 0:18
-
\$\begingroup\$ Sorry, i mean "The sum of the multiple of N". \$\endgroup\$Kevin Halley– Kevin Halley2017年09月08日 00:19:35 +00:00Commented Sep 8, 2017 at 0:19
-
\$\begingroup\$ @H.PWiz this is the sum of those, so I dunno \$\endgroup\$Stephen– Stephen2017年09月08日 00:21:11 +00:00Commented Sep 8, 2017 at 0:21
-
\$\begingroup\$ @Stephen That seems like a trivial change to me \$\endgroup\$H.PWiz– H.PWiz2017年09月08日 00:21:53 +00:00Commented Sep 8, 2017 at 0:21
70 Answers 70
-
\$\begingroup\$ Polyglot with 2sable \$\endgroup\$Mr. Xcoder– Mr. Xcoder2017年09月08日 09:31:12 +00:00Commented Sep 8, 2017 at 9:31
-
16\$\begingroup\$
ÑO- Rejecting the challenge and winning at the same time. That's pretty badass. \$\endgroup\$Lord Farquaad– Lord Farquaad2017年09月08日 20:26:52 +00:00Commented Sep 8, 2017 at 20:26
x86-64 Machine Code, 23 bytes
89 F9 89 FE EB 0D 89 F8 99 F7 F1 85 D2 99 0F 44 D1 01 D6 E2 F1 96 C3
The above bytes of code define a function that accepts a single integer, N, and returns the sum of its multiples as a result.
The single parameter is passed in the EDI register, consistent with the System V AMD64 ABI (as used on *nix-style systems). The result is returned in the EAX register, as with all x86 calling conventions.
The algorithm is a very straightforward one, similar to many of the other submissions in other languages. We loop N times, each time computing the modulo and adding that to our running total.
Ungolfed assembly mnemonics:
; unsigned SumOfMultiples(unsigned N /* (EDI) */)
mov ecx, edi ; make copy of input N, to be used as our loop counter
mov esi, edi ; make copy of input N, to be used as our accumulator
jmp CheckEnd ; jump directly to 'CheckEnd'
AddModulo:
mov eax, edi ; make copy of input N, to be used as input to DIV instruction
cdq ; short way of setting EDX to 0, based on EAX
div ecx ; divide EDX:EAX by ECX, placing remainder in EDX
test edx, edx ; test remainder, and set ZF if it is zero
cdq ; again, set EDX to 0, without clobbering flags
cmovz edx, ecx ; set EDX to ECX only if remainder was zero (EDX = ZF ? 0 : ECX)
add esi, edx ; add EDX to accumulator
CheckEnd:
loop AddModulo ; decrement loop counter (ECX), and keep looping if it != 0
xchg eax, esi ; move result from accumulator (ESI) into EAX
ret ; return, with result in EAX
It sure seems like there should be a way to make this shorter, but I can't see it. Computing modulo on x86 takes quite a bit of code, since you do it using the DIV (or IDIV) instruction, and both of those use fixed input registers (EDX and EAX), the values of which get clobbered (because they receive the results, the remainder and quotient, respectively).
The only real tricks here are pretty standard golfing ones:
- I've structured the code in a somewhat unusual way so that I can use the CISC-style
LOOPinstruction, which is basically just a combination ofDEC+JNZwith theECXregister as the implicit operand. - I'm using
XCHGat the end instead ofMOVbecause the former has a special 1-byte encoding whenEAXis one of the operands. - I use
CDQto zero outEDXin preparation for the division, even though for unsigned division you would ordinarily just zero it using aXOR. However,XORis always 2 bytes, whileCDQis only 1 byte. I useCDQagain a second time inside of the loop to zeroEDX, before theCMOVZinstruction. This works because I can be guaranteed that the quotient of the division (inEAX) is always unsigned, so a sign-extension intoEDXwill setEDXequal to 0.
-
\$\begingroup\$ If you're OK with undefined behaviour, you can save a few bytes by replacing that
return s;withs=s;. It comes out to 40 bytes. \$\endgroup\$CaydendW– CaydendW2025年05月11日 15:41:18 +00:00Commented May 11 at 15:41 -
C, C++, C#, D, Java, (削除) 65 (削除ここまで) 62 bytes
int d(int n){int s=0,i=1;for(;i<=n;++i)s+=n%i>0?0:i;return s;}
This works in all theses 5 programming languages because of similarities.
C, C++ and D optimization : (削除) 62 (削除ここまで) 60 bytes
In C++ and D, integers convert implicitly to booleans ( Zero => false, Not Zero => true ), so you don't need to have the !=0
int d(int n){int s=0,i=1;for(;i<=n;++i)s+=n%i?0:i;return s;}
D optimization : golfy template system, 55 bytes
T d(T)(T n){T s,i=1;for(;i<=n;++i)s+=n%i?0:i;return s;}
C++ optimization by c and c-- : (削除) 53 (削除ここまで) 52 bytes
int f(int n,int i=0){return++i<n?f(n,i)+i*!(n%i):n;}
Code to test :
C :
printf("%d %d %d %d %d", d(7), d(15), d(20), d(1), d(5));
C++ :
std::cout << d(7) << ' ' << d(15) << ' ' << d(20) << ' ' << d(1) << ' ' << d(5);
C# :
class FindSum
{
int d(int n) { int s = 0, i = 1; for (; i <= n; ++i) s += n % i > 0 ? 0 : i; return s; }
static void Main(string[] args)
{
var f = new FindSum();
Console.WriteLine(string.Format("{0}, {1}, {2}, {3}, {4}", f.d(7), f.d(15), f.d(20), f.d(1), f.d(5)));
}
}
D :
writeln(d(7));
writeln(d(15));
writeln(d(20));
writeln(d(1));
writeln(d(5));
Java :
public class FindSum {
int d(int n){int s=0,i=1;for(;i<=n;++i)s+=n%i>0?0:i;return s;}
public static void main(String[] args) {
FindSum f = new FindSum();
System.out.println(String.format("%d, %d, %d, %d, %d", f.d(7), f.d(15), f.d(20), f.d(1), f.d(5)));
}
}
-
\$\begingroup\$ A few things: First, I don't think you need parentheses around the
n%i/n%i!=0in any of the languages. Second, your first solution should be able to haven%i>0instead ofn%i!=0. Third, D's solution can beT d(T)(T n){T s,i=1;for(;i<=n;++i)s+=n%i?0:i;return s;}by abusing the template system and default values. \$\endgroup\$Adalynn– Adalynn2017年09月09日 13:51:59 +00:00Commented Sep 9, 2017 at 13:51 -
-
\$\begingroup\$ Alternative:
â x\$\endgroup\$Mr. Xcoder– Mr. Xcoder2017年09月08日 22:11:38 +00:00Commented Sep 8, 2017 at 22:11 -
\$\begingroup\$ @Mr.Xcoder: not really an alternative; it's doing the exact same thing - only difference is the choice of parenthesising. \$\endgroup\$Shaggy– Shaggy2017年10月10日 16:57:57 +00:00Commented Oct 10, 2017 at 16:57
-
\$\begingroup\$ Or with the flag
-x, it could be one byte \$\endgroup\$Gymhgy– Gymhgy2019年04月20日 19:30:26 +00:00Commented Apr 20, 2019 at 19:30
Mathematica, 14 bytes
Tr@Divisors@#&
or an answer by @Loki
Mathematica, 17 bytes
DivisorSum[#,#&]&
-
\$\begingroup\$ @Jennymathy Very nice, thanks! An equivalent and funny way to write it is also: DivisorSum[#, # &] & \$\endgroup\$Hans Olo– Hans Olo2017年09月08日 18:15:34 +00:00Commented Sep 8, 2017 at 18:15
-
\$\begingroup\$ @Jennymathy Hmm, this is even better: Total@Divisors@ is only 15 characters long! And it works: eg Total@Divisors@15 gives 24 as expected. Mathematica FTW :) \$\endgroup\$Hans Olo– Hans Olo2017年09月08日 19:27:48 +00:00Commented Sep 8, 2017 at 19:27
-
2\$\begingroup\$ @Loki and
Tr@Divisors@#&even better ;-) \$\endgroup\$ZaMoC– ZaMoC2017年09月08日 19:29:48 +00:00Commented Sep 8, 2017 at 19:29 -
1\$\begingroup\$ @Loki the program must be a function
f=that takes an input f[x] that's why I present it in this way.Welcome to PPCG \$\endgroup\$ZaMoC– ZaMoC2017年09月08日 19:36:32 +00:00Commented Sep 8, 2017 at 19:36 -
4\$\begingroup\$ You can use
Tr@*Divisorsto shave off a byte. \$\endgroup\$wchargin– wchargin2017年09月09日 01:52:17 +00:00Commented Sep 9, 2017 at 1:52
Shnap, (削除) 44 (削除ここまで) 43 bytes
-1 bye thanks to Mr. Xcoder (lol I was outgolfed in my own language)
$n return:{s=0for d:range(n+1)if n%d<1s+=d}
This is a function ($ starts a function in Shnap).
Explanation:
$ n //Start function with parameter n
return: { //Technically, we are returning a scope-block, which evaluates to the last statement run
s = 0 //Our result
for d : range(n+1) //For each value in the iterator range(n+1)
if n % d < 1 // If n is divisible by d
s += d // Add d to the sum
// Since (s += d) returns (s + d), and a scope-block returns the last run statement, this will be the last statement and equal to our result
}
Noncompeting, 19 bytes
After many language updates, this can now be reduced to a measly 19 bytes:
$n=>sum(factors(n))
-
1\$\begingroup\$
==0is<1(43 bytes) \$\endgroup\$Mr. Xcoder– Mr. Xcoder2017年09月08日 09:22:19 +00:00Commented Sep 8, 2017 at 9:22 -
\$\begingroup\$ @Mr. Xcoder thanks... I was outgolfed... In my own language... Which isn't even esoteric xD \$\endgroup\$Socratic Phoenix– Socratic Phoenix2017年09月08日 10:51:50 +00:00Commented Sep 8, 2017 at 10:51
Python, 44 bytes
lambda k:sum(i*(k%i<1)for i in range(1,1+k))
- Thanks to Stephen, save 1 byte by removing whitespace.
- Thanks to Jonathan Frech, save another 1 byte by changing if to multiply.
-
\$\begingroup\$ You could also write it as
lambda k:sum(-~i*(k%-~i<1)for i in range(k))\$\endgroup\$Deera Wijesundara– Deera Wijesundara2022年04月16日 11:04:32 +00:00Commented Apr 16, 2022 at 11:04 -
\$\begingroup\$ 41 bytes. \$\endgroup\$97.100.97.109– 97.100.97.1092022年09月26日 14:05:58 +00:00Commented Sep 26, 2022 at 14:05
-
\$\begingroup\$ @97.100.97.109 Maybe that is different enough to post as another answer. \$\endgroup\$tsh– tsh2022年09月27日 03:26:40 +00:00Commented Sep 27, 2022 at 3:26
-
\$\begingroup\$ @97.100.97.109 And looks like it is similar to this answer. codegolf.stackexchange.com/a/142108/44718 so you can go up vote that one. \$\endgroup\$tsh– tsh2022年09月27日 03:27:48 +00:00Commented Sep 27, 2022 at 3:27
J, 23 bytes
[:+/](([:=&0]|[)#])1+i.
For J fans, there is a clever 13 byte solution: >:@#.~/.~&.q: but since it wasn't my invention I'm not posting it as my official answer.
My own solution simply filters 1..n, finding divisors, then sums them. The crux of it is the dyadic fork
](([:=&0]|[)#])
Note that in this context ] is 1..n, and [ is n itself. Hence ]|[ are the remainders when dividing each element of 1..n into n, and =&0 tells you if they're equal to 0.
-
2\$\begingroup\$ This for 13 bytes should be equivalent:
+1#.i.*0=i.|]\$\endgroup\$miles– miles2017年09月08日 06:22:19 +00:00Commented Sep 8, 2017 at 6:22 -
\$\begingroup\$ @miles, that is really nice. This part is
i.|]is a great improvement on my approach. I don't fully understand this part though:+1#.i.-- could you explain it? \$\endgroup\$Jonah– Jonah2017年09月08日 06:27:12 +00:00Commented Sep 8, 2017 at 6:27 -
2\$\begingroup\$
1#.is base 1 conversion, which is equivalent to+/"1. Firsti.|]to get the remainders, then0=to find the ones equal to 0 (the divisors), theni.*to zero out the non-divisors in the range, then sum using1#., then add+itself sincei.is an exclusive range. \$\endgroup\$miles– miles2017年09月08日 06:31:06 +00:00Commented Sep 8, 2017 at 6:31
Pyth, 6 bytes
s*M{yP
Pyth doesn't have a built-in for divisors, so I think this is reasonable.
Explanation
s*M{yP - Full program with implicit input.
P - The prime factors of the input.
y - The powerset of its prime factors.
{ - Deduplicate.
*M - Map with multiplication.
s - Sum.
- Implicitly display the result.
Given 20, for instance, this is what our program does after each instruction:
P:[2, 2, 5].y:[[], [2], [2], [5], [2, 2], [2, 5], [2, 5], [2, 2, 5]].{:[[], [2], [5], [2, 2], [2, 5], [2, 2, 5]].*M:[1, 2, 5, 4, 10, 20].s:42.
Java (OpenJDK 8), (削除) 53 (削除ここまで) 51 bytes
n->{int s=0,i=0;for(;i++<n;)s+=n%i<1?i:0;return s;}
-
1\$\begingroup\$ @corsiKa Only class fields. In a local scope they're unitialized. \$\endgroup\$shooqie– shooqie2017年09月09日 09:03:58 +00:00Commented Sep 9, 2017 at 9:03
-
\$\begingroup\$ Jelly seems so beautiful! Where can i find some stuff to study about it? \$\endgroup\$Kevin Halley– Kevin Halley2017年09月08日 00:41:39 +00:00Commented Sep 8, 2017 at 0:41
-
\$\begingroup\$ @KevinHalley You can check out the Tutorial page on Github, or you can visit the official Jelly chatroom once you have 20 reputation, or the Jelly training chatroom, also at 20 reputation, which you'll need to request permission to train in \$\endgroup\$2017年09月08日 00:42:53 +00:00Commented Sep 8, 2017 at 0:42
-
4\$\begingroup\$ I desperately want to upvote this because you suggested not upvoting trivial solutions. \$\endgroup\$Cody Gray– Cody Gray2017年09月08日 06:01:49 +00:00Commented Sep 8, 2017 at 6:01
-
\$\begingroup\$ @CodyGray Yeah, maybe there's no point putting that there :P \$\endgroup\$2017年09月08日 12:00:12 +00:00Commented Sep 8, 2017 at 12:00
Javascript, (削除) 54 (削除ここまで) 44 bytes
n=>[...Array(x=n)].reduce(y=>y+!(n%x)*x--,0)
Saved 10 bytes thanks to Shaggy
Try it online!
const f = n=>[...Array(x=n)].reduce(y=>y+!(n%x)*x--,0)
console.log(f(7))
console.log(f(15))
console.log(f(20))
console.log(f(1))
console.log(f(5))
Brain-Flak, 96 bytes
((({})<>){<(([()]{})){<>(({})(<()>))<>{(({})){({}[()])<>}{}}{}<>([{}()]({})){((<{}{}>))}}{}>{}})
Explanation:
Now outdated by improvements.
The heart of the algorithm is this:
({}(<>))<>{(({})){({}[()])<>}{}}{}<>([{}()]({})) turns |N, M...| into |N mod M, M...|
{((<{}{}>))} if the top of stack is not zero, replace it and the second with zero
That is a modification on mod that will give us M if it is a factor of N and 0 otherwise. Full code is below.
((({})<>) place input, N on both stacks
{ Loop to find factors
<
(([()]{})) Decrement and Duplicate; get next factor to check
{ if not zero
(<>({})<>) Copy N from other stack
({}(<>))<>{(({})){({}[()])<>}{}}{}<>([{}()]({})){((<{}{}>))} Code explained above
}
{} drop the zero
>
{} add the factor
}) push the sum
-
\$\begingroup\$ Do you have an explanation? \$\endgroup\$2017年09月19日 02:33:45 +00:00Commented Sep 19, 2017 at 2:33
-
\$\begingroup\$ @FunkyComputerMan I got one now! \$\endgroup\$MegaTom– MegaTom2017年09月21日 19:56:41 +00:00Commented Sep 21, 2017 at 19:56
R, (削除) 31 (削除ここまで) 26 bytes
function(N)(x=1:N)%*%!N%%x
Returns a 1x1 matrix.
Computes !N%%x maps elements d of 1:N by: d->(1 if d divides N, 0 otherwise)
Then x%*%x!N%%x is the matrix product of 1:N which results in the sum of x where !N%%x is 1. Neat! Technically a port of Luis Mendo's Octave answer but I only saw that after I thought of this.
R+ numbers, 14 bytes
numbers::Sigma
-
\$\begingroup\$ For the first one you can save 2 bytes with
N=scan();\$\endgroup\$gstats– gstats2017年09月08日 12:07:34 +00:00Commented Sep 8, 2017 at 12:07 -
\$\begingroup\$ @gstats yes, but then I should get +4 bytes per meta discussion. If you have a strong opinion you can weigh in on Jarko's answer but as nobody has suggested an alternative, that stands in my mind. \$\endgroup\$Giuseppe– Giuseppe2017年09月08日 12:18:17 +00:00Commented Sep 8, 2017 at 12:18
-
\$\begingroup\$ Shouldn't the second be
numbers::Sigma(N)? Like this it outputs the source code of functionSigma. \$\endgroup\$Rui Barradas– Rui Barradas2017年09月08日 15:58:32 +00:00Commented Sep 8, 2017 at 15:58 -
\$\begingroup\$ @RuiBarradas a function is a perfectly good submission. to test it, you obviously have to call it as I do in the first submission. \$\endgroup\$Giuseppe– Giuseppe2017年09月08日 15:59:57 +00:00Commented Sep 8, 2017 at 15:59
-
\$\begingroup\$ Note: that anonymous functions in the later versions of R now can now use the syntax
\(x)instead offunction(x). So you can save quite a few characters there. \$\endgroup\$Anders Ellern Bilgrau– Anders Ellern Bilgrau2022年09月26日 11:32:50 +00:00Commented Sep 26, 2022 at 11:32
TI-Basic, 16 bytes
sum(seq(Inot(fPart(Ans/I)),I,1,Ans
Takes input in Ans. Output is stored in Ans and displayed.
-
\$\begingroup\$ wow that's pretty good \$\endgroup\$scpchicken– scpchicken2022年01月05日 02:51:49 +00:00Commented Jan 5, 2022 at 2:51
Raku, (削除) 25 (削除ここまで) (削除) 23 (削除ここまで) 22 bytes
thanks ovs for 2 byte improvement
also JoKing for 1 byte improvement
{sum grep $_%%*,1..$_}
declare anonymous block ($_ implicitly declared)
filter (grep) numbers from 1 to $_ inclusive using the whatever variable (*) that are divisible by $_
get the sum of that list
-
\$\begingroup\$
{grep($_%%*,1..$_).sum}works for 23 \$\endgroup\$ovs– ovs2022年01月05日 07:35:34 +00:00Commented Jan 5, 2022 at 7:35 -
\$\begingroup\$ that that is very smart \$\endgroup\$scpchicken– scpchicken2022年01月05日 16:35:26 +00:00Commented Jan 5, 2022 at 16:35
-
\$\begingroup\$ you can move
sumto the start to save one on the brackets, Try it online! \$\endgroup\$Jo King– Jo King2022年01月30日 12:38:56 +00:00Commented Jan 30, 2022 at 12:38
Excel VBA, 41 Bytes
Anonymous VBE immediate window function that takes input from [A1] and outputs to the VBE immediate window
For i=1To[A1]:s=s-i*([A1]mod i=0):Next:?s
Excel, 41 Bytes
Worksheet formula that takes input from [A1] and outputs to the caller
Requires MS Excel Version 16.0 or later for access to Let(...) function
=LET(a,SEQUENCE(A1),SUM((MOD(A1,a)=0)*a))
-
2\$\begingroup\$
For i=1To[A1]:s=s-([A1]mod i=0)*i:Next:?sis 41 bytes. The minus is because VBA seems to convert True to -1. \$\endgroup\$Axuary– Axuary2021年12月08日 02:27:33 +00:00Commented Dec 8, 2021 at 2:27 -
\$\begingroup\$ @Axuary - thanks for having me take a look at this one again - It was fun to make the worksheet formula solution for this \$\endgroup\$Taylor Raine– Taylor Raine2022年01月05日 01:23:14 +00:00Commented Jan 5, 2022 at 1:23
tinylisp, (削除) 74 (削除ここまで) 73 bytes
(load library
(d D(q((K N)(i K(a(i(mod N K)0 K)(D(s K 1)N))0
(q((N)(D N N
-1 byte thanks to DLosc.
And without library just for fun:
tinylisp, (削除) 97 (削除ここまで) 90 bytes
(d D(q((N K)(i(l N K)N(D(s N K)K
(d F(q((K N)(i K(a(i(D N K)0 K)(F(s K 1)N))0
(q((N)(F N N
-7 bytes thanks to DLosc.
-
\$\begingroup\$ @DLosc thanks! I should probably rename
DtoMsince now it's just amodfunction. \$\endgroup\$Giuseppe– Giuseppe2022年02月28日 20:11:37 +00:00Commented Feb 28, 2022 at 20:11 -
\$\begingroup\$ Huh--I didn't notice that, lol. \$\endgroup\$DLosc– DLosc2022年02月28日 23:27:04 +00:00Commented Feb 28, 2022 at 23:27
APL(Dyalog Unicode), (削除) (削除ここまで)9 bytes SBCS
+/∘⍸0=⍳|⊢
Explanation
⊢ right argument (let it be N)
| modulo
⍳ numbers from 1 to N
=
0
0=⍳|⊢ boolean mask for divisors of N
⍸ vector of indices (from 1 to N) of 1s in the mask
∘ function composition
/ reduction
+
+/ sum
+/∘⍸0=⍳|⊢ solution
JavaScript, 31 bytes
f=(n,i=n)=>i&&!(n%i)*i+f(n,i-1)
Bash + GNU utilities, 36
bc<<<`seq -f"n=%g;a+=n*!1ドル%%n;" 1ドル`a
Pure Bash, 41
for((;++i<=1ドル;a+=1ドル%i?0:i))
{
:
}
echo $a
I first tried a fancy bash expansion answer, but it ended up being longer than the simple loop above:
echo $[$(eval echo +\\\(n={1..1ドル},1ドル%n?0:n\\\))]