std::weibull_distribution
From cppreference.com
 
 
 
 
 
 C++ 
 Feature test macros (C++20)
 Concepts library (C++20)
 Metaprogramming library (C++11)
 Ranges library (C++20)
 Filesystem library (C++17)
 Concurrency support library (C++11)
 Execution control library (C++26)
Numerics library 
  
 
 
 
 
 
 
 Mathematical special functions (C++17)
 Mathematical constants (C++20)
 Basic linear algebra algorithms (C++26)
 Data-parallel types (SIMD) (C++26)
 Floating-point environment (C++11)
 Bit manipulation (C++20)
 Saturation arithmetic (C++26)
(C++17)
(C++17)
(C++17)
(C++17)
(C++17)
(C++17)
Pseudo-random number generation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(C++20)
(C++11)
(C++11)
(C++11)
(C++26)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++26)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
weibull_distribution
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
std::weibull_distribution
 
 
 Member functions
 Generation
 Characteristics
 Non-member functions
(C++11)(C++11)(until C++20)
(C++11)(C++11)
Defined in header 
 
 
<random> 
 template< class RealType = double >
class weibull_distribution;
 
 (since C++11) 
class weibull_distribution;
The weibull_distribution meets the requirements of a RandomNumberDistribution and produces random numbers according to the Weibull distribution:
- \(\small{f(x;a,b)=\frac{a}{b}{(\frac{x}{b})}^{a-1}\exp{(-{(\frac{x}{b})}^{a})} }\)f(x;a,b) = ab⎛
 ⎜
 ⎝xb⎞
 ⎟
 ⎠a-1
 exp⎛
 ⎜
 ⎝-⎛
 ⎜
 ⎝xb⎞
 ⎟
 ⎠a
 ⎞
 ⎟
 ⎠
a is the shape parameter and b the scale parameter.
std::weibull_distribution satisfies RandomNumberDistribution.
Contents
[edit] Template parameters
 RealType
 -
 The result type generated by the generator. The effect is undefined if this is not one of float, double, or long double.
[edit] Member types
 Member type
 Definition
result_type (C++11)
 RealType
[edit] Member functions
Generation
Characteristics
[edit] Non-member functions
(C++11)
(function template) [edit]
[edit] Example
Run this code
#include <cmath> #include <iomanip> #include <iostream> #include <map> #include <random> #include <string> int main() { std::random_device rd; std::mt19937 gen(rd()); std::weibull_distribution<> d; std::map <int, int> hist; for (int n = 0; n != 10000; ++n) ++hist[std::round (d(gen))]; std::cout << std::fixed << std::setprecision (1) << std::hex ; for (auto [x, y] : hist) std::cout << x << ' ' << std::string (y / 200, '*') << '\n'; }
Possible output:
0 ******************* 1 ******************* 2 ****** 3 ** 4 5 6 7 8
[edit] External links
 1. 
 Weisstein, Eric W. "Weibull Distribution." From MathWorld — A Wolfram Web Resource.
 2. 
 Weibull distribution — From Wikipedia.