erf, erff, erfl
From cppreference.com
 
 
 
 
 
  C 
 Concurrency support (C11)
 Common mathematical functions 
 
  
  
 
 
 
 
 
  
 
  
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 Functions
 Basic operations
 Maximum/minimum operations
(C23)
(C23)
(C23)
(C23)
(C23)
   Exponential functions
 Power functions
 Trigonometric and hyperbolic functions
 Nearest integer floating-point
 Floating-point manipulation
 Narrowing operations
 Quantum and quantum exponent
(C23)
(C23)
(C23)
(C23)
 Decimal re-encoding functions
(C23)
(C23)
(C23)
(C23)
 Total order and payload functions
(C23)
(C23)
(C23)
(C23)
 Classification
(C99)
(C23)
 (C99)
(C99)
(C99)
(C99)
(C99)
(C23)
(C23)
(C99)
(C99)
  (C99)
(C99)
(C99)
(C99)
(C23)
(C23)
 Error and gamma functions
 Types
(C99)(C99)
(C99)(C99)
(C23)(C23)
 Macro constants
 Special floating-point values
(C99)(C99)(C23)
(C99)(C23)
(C99)(C23)
 Arguments and return values
(C99)(C99)
(C99)(C99)(C99)(C99)(C99)
(C23)(C23)
(C23)(C23)(C23)(C23)(C23)
 Error handling
(C99)(C99)
 (C99)
 Fast operation indicators
(C99)(C99)
(C23)(C23)(C23)(C23)
(C23)(C23)(C23)(C23)
(C23)(C23)(C23)(C23)
(C99)(C23)
(C23)(C23)(C23)(C23)
(C23)(C23)(C23)(C23)
(C23)(C23)(C23)(C23)
Defined in header 
 
 
<math.h> 
 float       erff( float arg );
 (1) 
 (since C99) 
double      erf( double arg );
 (2) 
 (since C99) 
long double erfl( long double arg );
 (3) 
 (since C99) 
Defined in header 
 
 
<tgmath.h> 
 #define erf( arg )
 (4) 
 (since C99) 
4) Type-generic macro: If arg has type long double, 
erfl is called. Otherwise, if arg has integer type or the type double, erf is called. Otherwise, erff is called.Contents
[edit] Parameters
 arg
 -
 floating-point value
[edit] Return value
If no errors occur, value of the error function of arg, that is \(\frac{2}{\sqrt{\pi} }\int_{0}^{arg}{e^{-{t^2} }\mathsf{d}t}\) 2
 √π
∫arg0e-t2
dt, is returned. If a range error occurs due to underflow, the correct result (after rounding), that is \(\frac{2\cdot arg}{\sqrt{\pi} }\)
 2*arg
 √π
, is returned.
[edit] Error handling
Errors are reported as specified in math_errhandling.
If the implementation supports IEEE floating-point arithmetic (IEC 60559),
- If the argument is ±0, ±0 is returned
- If the argument is ±∞, ±1 is returned
- If the argument is NaN, NaN is returned
[edit] Notes
Underflow is guaranteed if |arg| < DBL_MIN *(sqrt (π)/2).
\(\operatorname{erf}(\frac{x}{\sigma \sqrt{2} })\)erf( x
 σ√2
) is the probability that a measurement whose errors are subject to a normal distribution with standard deviation \(\sigma\)σ is less than \(x\)x away from the mean value.
[edit] Example
Run this code
#include <math.h> #include <stdio.h> double phi(double x1, double x2) { return (erf(x2 / sqrt (2)) - erf(x1 / sqrt (2))) / 2; } int main(void) { puts ("normal variate probabilities:"); for (int n = -4; n < 4; ++n) printf ("[%2d:%2d]: %5.2f%%\n", n, n + 1, 100 * phi(n, n + 1)); puts ("special values:"); printf ("erf(-0) = %f\n", erf(-0.0)); printf ("erf(Inf) = %f\n", erf(INFINITY)); }
Output:
normal variate probabilities: [-4:-3]: 0.13% [-3:-2]: 2.14% [-2:-1]: 13.59% [-1: 0]: 34.13% [ 0: 1]: 34.13% [ 1: 2]: 13.59% [ 2: 3]: 2.14% [ 3: 4]: 0.13% special values: erf(-0) = -0.000000 erf(Inf) = 1.000000
[edit] References
- C11 standard (ISO/IEC 9899:2011):
- 7.12.8.1 The erf functions (p: 249)
 
- 7.25 Type-generic math <tgmath.h> (p: 373-375)
 
- F.10.5.1 The erf functions (p: 525)
 
- C99 standard (ISO/IEC 9899:1999):
- 7.12.8.1 The erf functions (p: 230)
 
- 7.22 Type-generic math <tgmath.h> (p: 335-337)
 
- F.9.5.1 The erf functions (p: 462)
 
[edit] See also
C++ documentation  for erf
[edit] External links
 Weisstein, Eric W. "Erf." From MathWorld — A Wolfram Web Resource.