Sangaku with Three Mixtilinear Circles

Sangaku traditionally contained a diagram and a question concerning the diagram. Sometimes there were also instructions for constructing of the depicted objects and occasionally a solution to the problem. One such sangaku with a solution could be found in [Smith and Mikami, p. 185]:

There is a circle in which a triangle and three circles, A, B, C, are inscribed in the manner shown in the figure. Given the diameters of the three inscribed circles, required the diameter of the circumscribed circle.

(The three inscribed circles are the mixtilinear circles in the inscribed triangle. Each mixtilinear circle is inscribed in an angle and touches the circumcircle of the triangle. In the applet below, I labeled A, B, C the vertices of the triangle with understanding that the circles are also labeled A, B, C depending on the angle into which each is inscribed.)


This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at https://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


The sangaku comes with a solution that is representative of the contemporary mathematical style:

Let the respective diameters be x, y, and z, and let xy = a. Then from a² take [(x - y)z]². Divide a by the remainder and call the result b. Then from (x + y)z take a and divide 0.5 by this remainder and add b, and then multiply by z and by a. The result is the diameter of the circumscribed circle.

Smith and Mikami note that to this rule is appended, with some note of pride, the words: "Feudal District of Kakegawa in Yenshu Province, third month of 1795, Miyajima Sonobei Keichi, pupil of Fujita Sadasuke of the School of Seki."

The rule can be translated as

xyz [xy / (x²y² - (x - yx²) + 0.5 /((x + y)z - xy)]

The applet let's you verify that the rule does work.

References

  1. D. E. Smith and Yoshio Mikami, A History of Japanese Mathematics, Dover, 2004 (originally 1914)

Related material
Read more...

Mixtilinear Incircles

Sangaku

  1. Sangaku: Reflections on the Phenomenon
  2. Critique of My View and a Response
  3. 1 + 27 = 12 + 16 Sangaku
  4. 3-4-5 Triangle by a Kid
  5. 7 = 2 + 5 Sangaku
  6. A 49th Degree Challenge
  7. A Geometric Mean Sangaku
  8. A Hard but Important Sangaku
  9. A Restored Sangaku Problem
  10. A Sangaku: Two Unrelated Circles
  11. A Sangaku by a Teen
  12. A Sangaku Follow-Up on an Archimedes' Lemma
  13. A Sangaku with an Egyptian Attachment
  14. A Sangaku with Many Circles and Some
  15. A Sushi Morsel
  16. An Old Japanese Theorem
  17. Archimedes Twins in the Edo Period
  18. Arithmetic Mean Sangaku
  19. Bottema Shatters Japan's Seclusion
  20. Chain of Circles on a Chord
  21. Circles and Semicircles in Rectangle
  22. Circles in a Circular Segment
  23. Circles Lined on the Legs of a Right Triangle
  24. Equal Incircles Theorem
  25. Equilateral Triangle, Straight Line and Tangent Circles
  26. Equilateral Triangles and Incircles in a Square
  27. Five Incircles in a Square
  28. Four Hinged Squares
  29. Four Incircles in Equilateral Triangle
  30. Gion Shrine Problem
  31. Harmonic Mean Sangaku
  32. Heron's Problem
  33. In the Wasan Spirit
  34. Incenters in Cyclic Quadrilateral
  35. Japanese Art and Mathematics
  36. Malfatti's Problem
  37. Maximal Properties of the Pythagorean Relation
  38. Neuberg Sangaku
  39. Out of Pentagon Sangaku
  40. Peacock Tail Sangaku
  41. Pentagon Proportions Sangaku
  42. Proportions in Square
  43. Pythagoras and Vecten Break Japan's Isolation
  44. Radius of a Circle by Paper Folding
  45. Review of Sacred Mathematics
  46. Sangaku à la V. Thebault
  47. Sangaku and The Egyptian Triangle
  48. Sangaku in a Square
  49. Sangaku Iterations, Is it Wasan?
  50. Sangaku with 8 Circles
  51. Sangaku with Angle between a Tangent and a Chord
  52. Sangaku with Quadratic Optimization
  53. Sangaku with Three Mixtilinear Circles
  54. Sangaku with Versines
  55. Sangakus with a Mixtilinear Circle
  56. Sequences of Touching Circles
  57. Square and Circle in a Gothic Cupola
  58. Steiner's Sangaku
  59. Tangent Circles and an Isosceles Triangle
  60. The Squinting Eyes Theorem
  61. Three Incircles In a Right Triangle
  62. Three Squares and Two Ellipses
  63. Three Tangent Circles Sangaku
  64. Triangles, Squares and Areas from Temple Geometry
  65. Two Arbelos, Two Chains
  66. Two Circles in an Angle
  67. Two Sangaku with Equal Incircles
  68. Another Sangaku in Square
  69. Sangaku via Peru
  70. FJG Capitan's Sangaku

|Activities| |Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny

73418925

AltStyle によって変換されたページ (->オリジナル) /