Test 1: solve a simple nonlinear homogeneous differential equation
fricas
(1) -> y := operator y
fricas
deq1 := D(y(x),x) = 9 - y(x)^2
\label{eq2}{{y^{\prime}}\left({x}\right)}={-{{y \left({x}\right)}^{2}}+ 9}
(2)
Type: Equation(Expression(Integer))
fricas
solve(deq1,y,x)
\label{eq3}\frac{-{\log \left({{y \left({x}\right)}+ 3}\right)}+{\log \left({{y \left({x}\right)}- 3}\right)}+{6 \ x}}{6}
(3)
Type: Union(Expression(Integer),...)
Test 2: solve a class of simple nonlinear homogeneous differential equations
fricas
deq2a := D(y(x),x) = c - p*y(x)^2
\label{eq4}{{y^{\prime}}\left({x}\right)}={-{p \ {{y \left({x}\right)}^{2}}}+ c}
(4)
Type: Equation(Expression(Integer))
fricas
xpr2b := solve(deq2a,y,x)
\label{eq5}\frac{{\log \left({\frac{{{\left({p \ {{y \left({x}\right)}^{2}}}+ c \right)}\ {\sqrt{c \ p}}}-{2 \ c \ p \ {y \left({x}\right)}}}{{p \ {{y \left({x}\right)}^{2}}}- c}}\right)}+{2 \ x \ {\sqrt{c \ p}}}}{2 \ {\sqrt{c \ p}}}
(5)
Type: Union(Expression(Integer),...)
fricas
simplify(x-xpr2b)
\label{eq6}\begin{array}{@{}l} \displaystyle - \ \ \displaystyle {\frac{\log \left({\frac{{{\left({p \ {{y \left({x}\right)}^{2}}}+ c \right)}\ {\sqrt{c \ p}}}-{2 \ c \ p \ {y \left({x}\right)}}}{{p \ {{y \left({x}\right)}^{2}}}- c}}\right)}{2 \ {\sqrt{c \ p}}}}
(6)
Type: Expression(Integer)
Test 3: find general solutions for nonlinear homogeneous differential equations
fricas
f := operator f
fricas
deq3 := D(y(x),x) = f(y(x))
\label{eq8}{{y^{\prime}}\left({x}\right)}={f \left({y \left({x}\right)}\right)}
(8)
Type: Equation(Expression(Integer))
fricas
solve(deq3,y,x)
\label{eq9}{\int^{ \displaystyle {y \left({x}\right)}}{{\frac{1}{f \left({\%D}\right)}}\ {d \%D}}}- x
(9)
Type: Union(Expression(Integer),...)
Test 4: integration
fricas
integrate(1/(1-x^2),x)
\label{eq10}\frac{{\log \left({x + 1}\right)}-{\log \left({x - 1}\right)}}{2}
(10)
Type: Union(Expression(Integer),...)
Test 5: check result
fricas
xpr5 := (log(x+1)-log(x-1))/2
\label{eq11}\frac{{\log \left({x + 1}\right)}-{\log \left({x - 1}\right)}}{2}
(11)
Type: Expression(Integer)
fricas
D(xpr5,x)
\label{eq12}-{\frac{1}{{{x}^{2}}- 1}}
(12)
Type: Expression(Integer)
Test 6: check simplification
fricas
xpr6 := log(1+2/(x-1))/2
\label{eq13}\frac{\log \left({\frac{x + 1}{x - 1}}\right)}{2}
(13)
Type: Expression(Integer)
fricas
D(xpr6,x)
\label{eq14}-{\frac{1}{{{x}^{2}}- 1}}
(14)
Type: Expression(Integer)
Test 7: Express y(x) as function of x (replacing y(x) with z)
fricas
eq7a := x = (log(z+1)-log(z-1))/2
\label{eq15}x ={\frac{{\log \left({z + 1}\right)}-{\log \left({z - 1}\right)}}{2}}
(15)
Type: Equation(Expression(Integer))
fricas
solve(eq7a,z)
\label{eq16}\left[{z ={\frac{-{{e}^{-{2 \ x}}}- 1}{{{e}^{-{2 \ x}}}- 1}}}\right]
(16)
Type: List(Equation(Expression(Integer)))
fricas
xpr7b := (1+exp(-2*z))/(1-exp(-2*z))
\label{eq17}\frac{-{{e}^{-{2 \ z}}}- 1}{{{e}^{-{2 \ z}}}- 1}
(17)
Type: Expression(Integer)
fricas
simplify(xpr7b)
\label{eq18}\frac{-{{e}^{-{2 \ z}}}- 1}{{{e}^{-{2 \ z}}}- 1}
(18)
Type: Expression(Integer)
Test 8: check simplified result
fricas
xpr8 := (1+exp(-2*x))/(1-exp(-2*x)) - (1+2/(exp(2*x)-1))
\label{eq19}\frac{-{2 \ {{e}^{-{2 \ x}}}\ {{e}^{2 \ x}}}+ 2}{{{\left({{e}^{-{2 \ x}}}- 1 \right)}\ {{e}^{2 \ x}}}-{{e}^{-{2 \ x}}}+ 1}
(19)
Type: Expression(Integer)
fricas
simplify(xpr8)
Type: Expression(Integer)
Test 9: check result by substitution in the DEQ
fricas
xpr9a := (1+2/(exp(2*x)-1))
\label{eq21}\frac{{{e}^{2 \ x}}+ 1}{{{e}^{2 \ x}}- 1}
(21)
Type: Expression(Integer)
fricas
xpr9b := D(xpr9a,x)
\label{eq22}-{\frac{4 \ {{e}^{2 \ x}}}{{{{e}^{2 \ x}}^{2}}-{2 \ {{e}^{2 \ x}}}+ 1}}
(22)
Type: Expression(Integer)
fricas
xpr9c := 1 - (xpr9a)^2
\label{eq23}-{\frac{4 \ {{e}^{2 \ x}}}{{{{e}^{2 \ x}}^{2}}-{2 \ {{e}^{2 \ x}}}+ 1}}
(23)
Type: Expression(Integer)
Test 10: finding the explicit solution for the deq in test 2
fricas
wcp := sqrt(c*p)
\label{eq24}\sqrt{c \ p}
(24)
Type: Expression(Integer)
fricas
xpr10a := log(((p*z^2+c)*wcp-2*c*p*z)/(p*z^2-c))/(2*wcp)
\label{eq25}\frac{\log \left({\frac{{{\left({p \ {{z}^{2}}}+ c \right)}\ {\sqrt{c \ p}}}-{2 \ c \ p \ z}}{{p \ {{z}^{2}}}- c}}\right)}{2 \ {\sqrt{c \ p}}}
(25)
Type: Expression(Integer)
fricas
solve(x = xpr10a,z)
\label{eq26}\begin{array}{@{}l} \displaystyle \left[{ \begin{array}{@{}l} \displaystyle z = \ \ \displaystyle {\frac{-{{\sqrt{c \ p}}\ {{{e}^{2 \ x \ {\sqrt{c \ p}}}}^{2}}}-{2 \ c \ p \ {{e}^{2 \ x \ {\sqrt{c \ p}}}}}-{c \ p \ {\sqrt{c \ p}}}}{{p \ {{{e}^{2 \ x \ {\sqrt{c \ p}}}}^{2}}}-{c \ {{p}^{2}}}}}
(26)
Type: List(Equation(Expression(Integer)))
fricas
eq10c := (p*z^2+c)*wcp-2*c*p*z
\label{eq27}{{\left({p \ {{z}^{2}}}+ c \right)}\ {\sqrt{c \ p}}}-{2 \ c \ p \ z}
(27)
Type: Expression(Integer)
fricas
solve(eq10c=0,z)
\label{eq28}\left[{z ={\frac{\sqrt{c \ p}}{p}}}\right]
(28)
Type: List(Equation(Expression(Integer)))
fricas
xpr10d := p*wcp*(z-wcp/p)^2
\label{eq29}{{\left({p \ {{z}^{2}}}+ c \right)}\ {\sqrt{c \ p}}}-{2 \ c \ p \ z}
(29)
Type: Expression(Integer)
fricas
simplify(xpr10d/eq10c)
Type: Expression(Integer)
fricas
xpr10e := (wcp/p)*(2/(1-exp(-2*wcp*x)/wcp)-1)
\label{eq31}\frac{-{{\sqrt{c \ p}}\ {{e}^{-{2 \ x \ {\sqrt{c \ p}}}}}}-{c \ p}}{{p \ {{e}^{-{2 \ x \ {\sqrt{c \ p}}}}}}-{p \ {\sqrt{c \ p}}}}
(31)
Type: Expression(Integer)
fricas
xpr10f := D(xpr10e,x)
\label{eq32}\begin{array}{@{}l} \displaystyle - \ \ \displaystyle {\frac{4 \ c \ {\sqrt{c \ p}}\ {{e}^{-{2 \ x \ {\sqrt{c \ p}}}}}}{{{{e}^{-{2 \ x \ {\sqrt{c \ p}}}}}^{2}}-{2 \ {\sqrt{c \ p}}\ {{e}^{-{2 \ x \ {\sqrt{c \ p}}}}}}+{c \ p}}}
(32)
Type: Expression(Integer)
fricas
xpr10g := c - p*(xpr10e)^2
\label{eq33}\begin{array}{@{}l} \displaystyle - \ \ \displaystyle {\frac{4 \ c \ {\sqrt{c \ p}}\ {{e}^{-{2 \ x \ {\sqrt{c \ p}}}}}}{{{{e}^{-{2 \ x \ {\sqrt{c \ p}}}}}^{2}}-{2 \ {\sqrt{c \ p}}\ {{e}^{-{2 \ x \ {\sqrt{c \ p}}}}}}+{c \ p}}}
(33)
Type: Expression(Integer)
fricas
simplify(xpr10f / xpr10g)
Type: Expression(Integer)
Test 11: non-homogeneous generalization: c as linear function of x
fricas
deq11a := D(y(x),x) = a*x + b - p*y(x)^2
\label{eq35}{{y^{\prime}}\left({x}\right)}={-{p \ {{y \left({x}\right)}^{2}}}+{a \ x}+ b}
(35)
Type: Equation(Expression(Integer))
fricas
solve(deq11a,y,x)
\label{eq36}\verb#"failed"#
(36)
Type: Union("failed",...)
Test 12: non-homogeneous generalization: c as arbitrary function of x
fricas
c := operator c
fricas
deq12a := D(y(x),x) = c(x) - p*y(x)^2
\label{eq38}{{y^{\prime}}\left({x}\right)}={-{p \ {{y \left({x}\right)}^{2}}}+{c \left({x}\right)}}
(38)
Type: Equation(Expression(Integer))
fricas
solve(deq12a,y,x)
\label{eq39}\verb#"failed"#
(39)
Type: Union("failed",...)
Test 13: guessing solution for deq12a
fricas
wpcx := sqrt(c(x))*sqrt(p)
\label{eq40}{\sqrt{p}}\ {\sqrt{c \left({x}\right)}}
(40)
Type: Expression(Integer)
fricas
xpr13a := log((p*wpcx*(z-wpcx/p)^2)/(p*z^2-c(x)))/(2*wpcx)
\label{eq41}\frac{\log \left({\frac{{{\left(-{c \left({x}\right)}-{p \ {{z}^{2}}}\right)}\ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}+{2 \ p \ z \ {c \left({x}\right)}}}{{c \left({x}\right)}-{p \ {{z}^{2}}}}}\right)}{2 \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}
(41)
Type: Expression(Integer)
fricas
xpr13b := (wpcx/p)*(2/(1-exp(-2*wpcx*x)/wpcx)-1)
\label{eq42}\frac{-{{\sqrt{p}}\ {\sqrt{c \left({x}\right)}}\ {{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}-{p \ {c \left({x}\right)}}}{{p \ {{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}-{p \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}
(42)
Type: Expression(Integer)
fricas
xpr13c := D(xpr13b,x)
\label{eq43}\frac{-{{\sqrt{p}}\ {{c^{\prime}}\left({x}\right)}\ {{{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}^{2}}}+{{\left({{\left(-{2 \ p \ {\sqrt{c \left({x}\right)}}}-{4 \ p \ x \ {c \left({x}\right)}\ {\sqrt{p}}}\right)}\ {{c^{\prime}}\left({x}\right)}}-{8 \ p \ {{c \left({x}\right)}^{2}}\ {\sqrt{p}}}\right)}\ {{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}+{p \ {c \left({x}\right)}\ {\sqrt{p}}\ {{c^{\prime}}\left({x}\right)}}}{{2 \ p \ {\sqrt{c \left({x}\right)}}\ {{{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}^{2}}}-{4 \ p \ {c \left({x}\right)}\ {\sqrt{p}}\ {{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}+{2 \ {{p}^{2}}\ {c \left({x}\right)}\ {\sqrt{c \left({x}\right)}}}}
(43)
Type: Expression(Integer)
fricas
xpr13d := c(x) - p*(xpr13b)^2
\label{eq44}\begin{array}{@{}l} \displaystyle - \ \ \displaystyle {\frac{4 \ {c \left({x}\right)}\ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}\ {{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}{{{{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}^{2}}-{2 \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}\ {{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}+{p \ {c \left({x}\right)}}}}
(44)
Type: Expression(Integer)
fricas
simplify(xpr13d / xpr13c)
\label{eq45}\frac{{8 \ {{p}^{2}}\ {{c \left({x}\right)}^{3}}\ {\sqrt{p}}\ {{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}-{{16}\ {{p}^{2}}\ {{c \left({x}\right)}^{2}}\ {\sqrt{c \left({x}\right)}}\ {{e}^{-{4 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}+{8 \ p \ {{c \left({x}\right)}^{2}}\ {\sqrt{p}}\ {{e}^{-{6 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}}{{{\left({{\left({4 \ {{p}^{2}}\ {c \left({x}\right)}\ {\sqrt{c \left({x}\right)}}}+{4 \ {{p}^{2}}\ x \ {{c \left({x}\right)}^{2}}\ {\sqrt{p}}}\right)}\ {{c^{\prime}}\left({x}\right)}}+{8 \ {{p}^{2}}\ {{c \left({x}\right)}^{3}}\ {\sqrt{p}}}\right)}\ {{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}+{{\left({{\left(-{8 \ {{p}^{2}}\ x \ {c \left({x}\right)}\ {\sqrt{c \left({x}\right)}}}-{4 \ p \ {c \left({x}\right)}\ {\sqrt{p}}}\right)}\ {{c^{\prime}}\left({x}\right)}}-{{16}\ {{p}^{2}}\ {{c \left({x}\right)}^{2}}\ {\sqrt{c \left({x}\right)}}}\right)}\ {{e}^{-{4 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}+{{\left({4 \ p \ x \ {c \left({x}\right)}\ {\sqrt{p}}\ {{c^{\prime}}\left({x}\right)}}+{8 \ p \ {{c \left({x}\right)}^{2}}\ {\sqrt{p}}}\right)}\ {{e}^{-{6 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}+{{\sqrt{p}}\ {{c^{\prime}}\left({x}\right)}\ {{e}^{-{8 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}-{{{p}^{2}}\ {{c \left({x}\right)}^{2}}\ {\sqrt{p}}\ {{c^{\prime}}\left({x}\right)}}}
(45)
Type: Expression(Integer)
fricas
xpr13e := simplify(D((2/(1-exp(-2*wpcx*x)/wpcx)-1),x))
\label{eq46}\frac{{\left({{\left({2 \ p \ x \ {\sqrt{c \left({x}\right)}}}+{\sqrt{p}}\right)}\ {{c^{\prime}}\left({x}\right)}}+{4 \ p \ {c \left({x}\right)}\ {\sqrt{c \left({x}\right)}}}\right)}\ {{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}{{2 \ {c \left({x}\right)}\ {\sqrt{p}}\ {{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}-{{\sqrt{c \left({x}\right)}}\ {{e}^{-{4 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}-{p \ {c \left({x}\right)}\ {\sqrt{c \left({x}\right)}}}}
(46)
Type: Expression(Integer)
fricas
xpr13f := (wpcx-exp(-2*wpcx*x))^2
\label{eq47}{{{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}^{2}}-{2 \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}\ {{e}^{-{2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}}}}+{p \ {c \left({x}\right)}}
(47)
Type: Expression(Integer)
fricas
xpr13g := simplify(((2*p*c(x)*x+wpcx)*D(c(x),x)+4*p*c(x)^2)/wpcx)
\label{eq48}\frac{{{\left({{\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}+{2 \ p \ x \ {c \left({x}\right)}}\right)}\ {{c^{\prime}}\left({x}\right)}}+{4 \ p \ {{c \left({x}\right)}^{2}}}}{{\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}
(48)
Type: Expression(Integer)
fricas
xpr13h := simplify((1+2*wpcx*x)*D(c(x),x)+4*wpcx*c(x))
\label{eq49}{{\left({2 \ x \ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}+ 1 \right)}\ {{c^{\prime}}\left({x}\right)}}+{4 \ {c \left({x}\right)}\ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}
(49)
Type: Expression(Integer)
fricas
simplify(xpr13h/xpr13g)
Type: Expression(Integer)
fricas
xpr13i := simplify((1/(wpcx-z)-1/(2*wpcx))*D(c(x),x) + ((1+2*wpcx*x)*D(c(x),x)+4*wpcx*c(x))*z/(wpcx-z)^2)
\label{eq51}\frac{{{\left({{\left({{\left(-{4 \ p \ x \ z}- p \right)}\ {c \left({x}\right)}}+{3 \ {{z}^{2}}}\right)}\ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}+{{\left({4 \ p \ x \ {{z}^{2}}}-{p \ z}\right)}\ {c \left({x}\right)}}-{{z}^{3}}\right)}\ {{c^{\prime}}\left({x}\right)}}-{8 \ p \ z \ {{c \left({x}\right)}^{2}}\ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}+{8 \ p \ {{z}^{2}}\ {{c \left({x}\right)}^{2}}}}{{{\left({6 \ p \ z \ {c \left({x}\right)}}+{2 \ {{z}^{3}}}\right)}\ {\sqrt{p}}\ {\sqrt{c \left({x}\right)}}}-{2 \ {{p}^{2}}\ {{c \left({x}\right)}^{2}}}-{6 \ p \ {{z}^{2}}\ {c \left({x}\right)}}}
(51)
Type: Expression(Integer)
fricas
w := operator w
fricas
z := operator z
fricas
simplify(D((2/(1-z(x)/w(x))-1)*c(x)/w(x),x))
\label{eq54}\frac{{2 \ {c \left({x}\right)}\ {{w \left({x}\right)}^{2}}\ {{z^{\prime}}\left({x}\right)}}+{{\left({{c \left({x}\right)}\ {{z \left({x}\right)}^{2}}}-{2 \ {c \left({x}\right)}\ {w \left({x}\right)}\ {z \left({x}\right)}}-{{c \left({x}\right)}\ {{w \left({x}\right)}^{2}}}\right)}\ {{w^{\prime}}\left({x}\right)}}+{{\left(-{{w \left({x}\right)}\ {{z \left({x}\right)}^{2}}}+{{w \left({x}\right)}^{3}}\right)}\ {{c^{\prime}}\left({x}\right)}}}{{{{w \left({x}\right)}^{2}}\ {{z \left({x}\right)}^{2}}}-{2 \ {{w \left({x}\right)}^{3}}\ {z \left({x}\right)}}+{{w \left({x}\right)}^{4}}}
(54)
Type: Expression(Integer)
fricas
simplify((2*c(x)*w(x)^2*D(z(x),x)+(z(x)^2-2*w(x)*z(x)-w(x)^2)*c(x)*D(w(x),x)+(w(x)^3-w(x)*z(x)^2)*D(c(x),x))/(w(x)^2*(z(x)-w(x))^2))
\label{eq55}\frac{{2 \ {c \left({x}\right)}\ {{w \left({x}\right)}^{2}}\ {{z^{\prime}}\left({x}\right)}}+{{\left({{c \left({x}\right)}\ {{z \left({x}\right)}^{2}}}-{2 \ {c \left({x}\right)}\ {w \left({x}\right)}\ {z \left({x}\right)}}-{{c \left({x}\right)}\ {{w \left({x}\right)}^{2}}}\right)}\ {{w^{\prime}}\left({x}\right)}}+{{\left(-{{w \left({x}\right)}\ {{z \left({x}\right)}^{2}}}+{{w \left({x}\right)}^{3}}\right)}\ {{c^{\prime}}\left({x}\right)}}}{{{{w \left({x}\right)}^{2}}\ {{z \left({x}\right)}^{2}}}-{2 \ {{w \left({x}\right)}^{3}}\ {z \left({x}\right)}}+{{w \left({x}\right)}^{4}}}
(55)
Type: Expression(Integer)
fricas
xpr13j := simplify((2*c(x)*w(x)^2*w(x)*z(x)*(x/c(x)-1/2)+(z(x)^2-2*w(x)*z(x)-w(x)^2)*c(x)*(-w(x)/(2*c(x)))+(w(x)^3-w(x)*z(x)^2)*D(c(x),x))/(w(x)^2*(z(x)-w(x))^2))
\label{eq56}\frac{{{\left(-{2 \ {{z \left({x}\right)}^{2}}}+{2 \ {{w \left({x}\right)}^{2}}}\right)}\ {{c^{\prime}}\left({x}\right)}}-{{z \left({x}\right)}^{2}}+{{\left({{\left(-{2 \ {c \left({x}\right)}}+{4 \ x}\right)}\ {{w \left({x}\right)}^{2}}}+{2 \ {w \left({x}\right)}}\right)}\ {z \left({x}\right)}}+{{w \left({x}\right)}^{2}}}{{2 \ {w \left({x}\right)}\ {{z \left({x}\right)}^{2}}}-{4 \ {{w \left({x}\right)}^{2}}\ {z \left({x}\right)}}+{2 \ {{w \left({x}\right)}^{3}}}}
(56)
Type: Expression(Integer)
fricas
xpr13k := simplify((1/(w(x)-z(x))-1/(2*w(x)))*D(c(x),x) + ((1+2*w(x)*x)*D(c(x),x) + 4*w(x)*c(x))*z(x)/(w(x)-z(x))^2)
\label{eq57}\frac{{{\left(-{{z \left({x}\right)}^{2}}+{{\left({4 \ x \ {{w \left({x}\right)}^{2}}}+{2 \ {w \left({x}\right)}}\right)}\ {z \left({x}\right)}}+{{w \left({x}\right)}^{2}}\right)}\ {{c^{\prime}}\left({x}\right)}}+{8 \ {c \left({x}\right)}\ {{w \left({x}\right)}^{2}}\ {z \left({x}\right)}}}{{2 \ {w \left({x}\right)}\ {{z \left({x}\right)}^{2}}}-{4 \ {{w \left({x}\right)}^{2}}\ {z \left({x}\right)}}+{2 \ {{w \left({x}\right)}^{3}}}}
(57)
Type: Expression(Integer)
fricas
simplify(xpr13k/xpr13j)
\label{eq58}\frac{{{\left({{z \left({x}\right)}^{2}}+{{\left(-{4 \ x \ {{w \left({x}\right)}^{2}}}-{2 \ {w \left({x}\right)}}\right)}\ {z \left({x}\right)}}-{{w \left({x}\right)}^{2}}\right)}\ {{c^{\prime}}\left({x}\right)}}-{8 \ {c \left({x}\right)}\ {{w \left({x}\right)}^{2}}\ {z \left({x}\right)}}}{{{\left({2 \ {{z \left({x}\right)}^{2}}}-{2 \ {{w \left({x}\right)}^{2}}}\right)}\ {{c^{\prime}}\left({x}\right)}}+{{z \left({x}\right)}^{2}}+{{\left({{\left({2 \ {c \left({x}\right)}}-{4 \ x}\right)}\ {{w \left({x}\right)}^{2}}}-{2 \ {w \left({x}\right)}}\right)}\ {z \left({x}\right)}}-{{w \left({x}\right)}^{2}}}
(58)
Type: Expression(Integer)
fricas
simplify(xpr13k-xpr13j)
\label{eq59}\frac{{{\left({{z \left({x}\right)}^{2}}+{{\left({4 \ x \ {{w \left({x}\right)}^{2}}}+{2 \ {w \left({x}\right)}}\right)}\ {z \left({x}\right)}}-{{w \left({x}\right)}^{2}}\right)}\ {{c^{\prime}}\left({x}\right)}}+{{z \left({x}\right)}^{2}}+{{\left({{\left({{10}\ {c \left({x}\right)}}-{4 \ x}\right)}\ {{w \left({x}\right)}^{2}}}-{2 \ {w \left({x}\right)}}\right)}\ {z \left({x}\right)}}-{{w \left({x}\right)}^{2}}}{{2 \ {w \left({x}\right)}\ {{z \left({x}\right)}^{2}}}-{4 \ {{w \left({x}\right)}^{2}}\ {z \left({x}\right)}}+{2 \ {{w \left({x}\right)}^{3}}}}
(59)
Type: Expression(Integer)