ScreenShots
last edited 4 years ago by test1

Edit detail for ScreenShots revision 5 of 13

1 2 3 4 5 6 7 8 9 10 11 12 13
Editor: 127.0.0.1
Time: 2007年11月15日 18:11:08 GMT-8
Note: re-create original screenshots page from Savannah

changed:
-Some matrix computations under TeXmacs. Please notice the hierarchical editing capabilities of TeXmacs. 
-
 <ul>
 <li>
 <p>
 Some computations. An important thing: everything is
 <em>mathematically typed</em> in Axiom. <br/>
 <pre>
(1) -> 1+1
 (1) 2
 Type: PositiveInteger
(2) -> integrate(1/x^(1/3),x)
 3+-+2
 3\|x
 (2) ------
 2
 Type: Union(Expression Integer,...)
 </pre>
 </p>
 Axiom is running under Windows. 
 </li>
 <li>
Some matrix computations under <a href="http://texmacs.org/">TeXmacs</a>.
 <p>
changed:
-
-Axiom is running under Windows. This is a screenshot of Axiom running on Windows in a TeXmacs window:
-
-<img src="http://axiom.axiom-developer.org/axiom-website/screenshot2.jpg">
-
-
 </p>
Please notice the hierarchical editing capabilities of TeXmacs.
 </li>
 <li>
 <p>Some more complicated computations:
 <pre>
)cl all
 
 All user variables and function definitions have been cleared.
(1) -> Word := OrderedFreeMonoid(Symbol)
 
 (1) OrderedFreeMonoid Symbol
 Type: Domain
(2) -> poly:= XPR(Integer,Word)
 
 (2) XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
 Type: Domain
(3) -> p:poly := 2 * x - 3 * y + 1
 
 (3) 1 + 2x - 3y
 Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
(4) -> q:poly := 2 * x + 1
 
 (4) 1 + 2x
 Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
(5) -> p + q
 
 (5) 2 + 4x - 3y
 Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
(6) -> p * q
 
 2
 (6) 1 + 4x - 3y + 4x - 6y x
 Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
(7) -> (p +q)^2 -p^2 -q^2 - 2*p*q
 
 (7) - 6x y + 6y x
 Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
(8) -> M := SquareMatrix(2,Fraction Integer)
 
 (8) SquareMatrix(2,Fraction Integer)
 Type: Domain
(9) -> poly1:= XPR(M,Word)
 
 (9)
 XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)
 Type: Domain
(10) -> m1:M := matrix [[i*j**2 for i in 1..2] for j in 1..2]
 
 +1 2+
 (10) | |
 +4 8+
 Type: SquareMatrix(2,Fraction Integer)
(11) -> m2:M := m1 - 5/4
 
 + 1 +
 |- - 2 |
 | 4 |
 (11) | |
 | 27|
 | 4 --|
 + 4+
 Type: SquareMatrix(2,Fraction Integer)
(12) -> m3: M := m2**2
 
 +129 +
 |--- 13 |
 | 16 |
 (12) | |
 | 857|
 |26 ---|
 + 16+
 Type: SquareMatrix(2,Fraction Integer)
(13) -> pm:poly1 := m1*x + m2*y + m3*z - 2/3
 
 + 2 + + 1 + +129 +
 |- - 0 | |- - 2 | |--- 13 |
 | 3 | +1 2+ | 4 | | 16 |
 (13) | | + | |x + | |y + | |z
 | 2| +4 8+ | 27| | 857|
 | 0 - -| | 4 --| |26 ---|
 + 3+ + 4+ + 16+
Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)
(14) -> qm:poly1 := pm - m1*x
 
 + 2 + + 1 + +129 +
 |- - 0 | |- - 2 | |--- 13 |
 | 3 | | 4 | | 16 |
 (14) | | + | |y + | |z
 | 2| | 27| | 857|
 | 0 - -| | 4 --| |26 ---|
 + 3+ + 4+ + 16+
Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)
(15) -> qm**3
 
 (15)
 + 8 + + 1 8+ +43 52 + + 129 +
 |- -- 0 | |- - -| |-- -- | |- --- - 26 |
 | 27 | | 3 3| | 4 3 | | 8 | 2
 | | + | |y + | |z + | |y
 | 8| |16 | |104 857| | 857|
 | 0 - --| |-- 9| |--- ---| |- 52 - ---|
 + 27+ + 3 + + 3 12+ + 8 +
 + 
 + 3199 831 + + 3199 831 + + 103169 6409 +
 |- ---- - --- | |- ---- - --- | |- ------ - ---- |
 | 32 4 | | 32 4 | | 128 4 | 2
 | |y z + | |z y + | |z
 | 831 26467| | 831 26467| | 6409 820977|
 |- --- - -----| |- --- - -----| | - ---- - ------|
 + 2 32 + + 2 32 + + 2 128 +
 + 
 +3199 831 + +103169 6409 + +103169 6409 +
 |---- --- | |------ ---- | |------ ---- |
 | 64 8 | 3 | 256 8 | 2 | 256 8 |
 | |y + | |y z + | |y z y
 |831 26467| | 6409 820977| | 6409 820977|
 |--- -----| | ---- ------| | ---- ------|
 + 4 64 + + 4 256 + + 4 256 +
 + 
 +3178239 795341 + +103169 6409 + +3178239 795341 +
 |------- ------ | |------ ---- | |------- ------ |
 | 1024 128 | 2 | 256 8 | 2 | 1024 128 |
 | |y z + | |z y + | |z y z
 |795341 25447787| | 6409 820977| |795341 25447787|
 |------ --------| | ---- ------| |------ --------|
 + 64 1024 + + 4 256 + + 64 1024 +
 + 
 +3178239 795341 + +98625409 12326223 +
 |------- ------ | |-------- -------- |
 | 1024 128 | 2 | 4096 256 | 3
 | |z y + | |z
 |795341 25447787| |12326223 788893897|
 |------ --------| |-------- ---------|
 + 64 1024 + + 128 4096 +
Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)
 </pre>
 </p>
 </li>
 </ul>
</div>
<div id="credit">$Id: screenshots.html,v 1.8 2003年11月02日 09:43:28 dmentre Exp $
</div>


  • Some computations. An important thing: everything is mathematically typed in Axiom.

    (1) -> 1+1
     (1) 2
     Type: PositiveInteger
    (2) -> integrate(1/x^(1/3),x)
     3+-+2
     3\|x
     (2) ------
     2
     Type: Union(Expression Integer,...)
     

    Axiom is running under Windows.
  • Some matrix computations under TeXmacs? . Please notice the hierarchical editing capabilities of TeXmacs?.
  • Some more complicated computations:

    )cl all
     
     All user variables and function definitions have been cleared.
    (1) -> Word := OrderedFreeMonoid(Symbol)
     
     (1) OrderedFreeMonoid Symbol
     Type: Domain
    (2) -> poly:= XPR(Integer,Word)
     
     (2) XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
     Type: Domain
    (3) -> p:poly := 2 * x - 3 * y + 1
     
     (3) 1 + 2x - 3y
     Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
    (4) -> q:poly := 2 * x + 1
     
     (4) 1 + 2x
     Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
    (5) -> p + q
     
     (5) 2 + 4x - 3y
     Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
    (6) -> p * q
     
     2
     (6) 1 + 4x - 3y + 4x - 6y x
     Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
    (7) -> (p +q)^2 -p^2 -q^2 - 2*p*q
     
     (7) - 6x y + 6y x
     Type: XPolynomialRing(Integer,OrderedFreeMonoid Symbol)
    (8) -> M := SquareMatrix(2,Fraction Integer)
     
     (8) SquareMatrix(2,Fraction Integer)
     Type: Domain
    (9) -> poly1:= XPR(M,Word)
     
     (9)
     XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)
     Type: Domain
    (10) -> m1:M := matrix [[i*j**2 for i in 1..2] for j in 1..2]
     
     +1 2+
     (10) | |
     +4 8+
     Type: SquareMatrix(2,Fraction Integer)
    (11) -> m2:M := m1 - 5/4
     
     + 1 +
     |- - 2 |
     | 4 |
     (11) | |
     | 27|
     | 4 --|
     + 4+
     Type: SquareMatrix(2,Fraction Integer)
    (12) -> m3: M := m2**2
     
     +129 +
     |--- 13 |
     | 16 |
     (12) | |
     | 857|
     |26 ---|
     + 16+
     Type: SquareMatrix(2,Fraction Integer)
    (13) -> pm:poly1 := m1*x + m2*y + m3*z - 2/3
     
     + 2 + + 1 + +129 +
     |- - 0 | |- - 2 | |--- 13 |
     | 3 | +1 2+ | 4 | | 16 |
     (13) | | + | |x + | |y + | |z
     | 2| +4 8+ | 27| | 857|
     | 0 - -| | 4 --| |26 ---|
     + 3+ + 4+ + 16+
    Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)
    (14) -> qm:poly1 := pm - m1*x
     
     + 2 + + 1 + +129 +
     |- - 0 | |- - 2 | |--- 13 |
     | 3 | | 4 | | 16 |
     (14) | | + | |y + | |z
     | 2| | 27| | 857|
     | 0 - -| | 4 --| |26 ---|
     + 3+ + 4+ + 16+
    Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)
    (15) -> qm**3
     
     (15)
     + 8 + + 1 8+ +43 52 + + 129 +
     |- -- 0 | |- - -| |-- -- | |- --- - 26 |
     | 27 | | 3 3| | 4 3 | | 8 | 2
     | | + | |y + | |z + | |y
     | 8| |16 | |104 857| | 857|
     | 0 - --| |-- 9| |--- ---| |- 52 - ---|
     + 27+ + 3 + + 3 12+ + 8 +
     + 
     + 3199 831 + + 3199 831 + + 103169 6409 +
     |- ---- - --- | |- ---- - --- | |- ------ - ---- |
     | 32 4 | | 32 4 | | 128 4 | 2
     | |y z + | |z y + | |z
     | 831 26467| | 831 26467| | 6409 820977|
     |- --- - -----| |- --- - -----| | - ---- - ------|
     + 2 32 + + 2 32 + + 2 128 +
     + 
     +3199 831 + +103169 6409 + +103169 6409 +
     |---- --- | |------ ---- | |------ ---- |
     | 64 8 | 3 | 256 8 | 2 | 256 8 |
     | |y + | |y z + | |y z y
     |831 26467| | 6409 820977| | 6409 820977|
     |--- -----| | ---- ------| | ---- ------|
     + 4 64 + + 4 256 + + 4 256 +
     + 
     +3178239 795341 + +103169 6409 + +3178239 795341 +
     |------- ------ | |------ ---- | |------- ------ |
     | 1024 128 | 2 | 256 8 | 2 | 1024 128 |
     | |y z + | |z y + | |z y z
     |795341 25447787| | 6409 820977| |795341 25447787|
     |------ --------| | ---- ------| |------ --------|
     + 64 1024 + + 4 256 + + 64 1024 +
     + 
     +3178239 795341 + +98625409 12326223 +
     |------- ------ | |-------- -------- |
     | 1024 128 | 2 | 4096 256 | 3
     | |z y + | |z
     |795341 25447787| |12326223 788893897|
     |------ --------| |-------- ---------|
     + 64 1024 + + 128 4096 +
    Type: XPolynomialRing(SquareMatrix(2,Fraction Integer),OrderedFreeMonoid Symbol)
     

$Id: screenshots.html,v 1.8 2003年11月02日 09:43:28 dmentre Exp $

AltStyle によって変換されたページ (->オリジナル) /