(1) -> OF ==> OutputForm
R ==> Record(OUTPUTFORM:OF,SEXPRESSION: SExpression, TEXFORMAT:TexFormat)
e x ==> (print(([x::OF,(x::OF) pretend SExpression, x::OF::TexFormat]$R)::OF);x)
)set output algebra on
a: OF := "a"::Symbol::OF
(4) a
aa: OF := "aa"::Symbol::OF
(5) aa
b: OF := "b"::Symbol::OF
(6) b
bb: OF := "bb"::Symbol::OF
(7) bb
There are parentheses missing in the algebra output.
e((a+b) rem (aa*bb))
[OUTPUTFORM = (a + b) rem aa bb,SEXPRESSION = (rem (+ a b) (* aa bb)),
TEXFORMAT = ["$$","rem ", "\left(", "{{a+b}, \: {aa \ bb}} ", "\right)", "$$"] ]
(8) (a + b) rem aa bb
e((a+b) quo (aa*bb))
[OUTPUTFORM = (a + b) quo aa bb,SEXPRESSION = (quo (+ a b) (* aa bb)),
TEXFORMAT = ["$$","quo ", "\left(", "{{a+b}, \: {aa \ bb}} ", "\right)", "$$"] ]
(9) (a + b) quo aa bb
e((a+b) exquo (aa*bb))
[OUTPUTFORM = (a + b) exquo aa bb,SEXPRESSION = (exquo (+ a b) (* aa bb)),
TEXFORMAT = ["$$","exquo ", "\left(", "{{a+b}, \: {aa \ bb}} ", "\right)", "$$"] ]
(10) (a + b) exquo aa bb
differentiate(a+b,1)
,(11) a + b
differentiate(a*b,2)
,, (12) a b
prime(a+b,4)
,, , , (13) a + b
super(aa+bb,a+b)
a + b (14) aa + bb