MathAction SandBoxTensorProduct3



SandBoxTensorProduct3
last edited 8 years ago by pagani

fricas
(1) -> R ==> EXPR INT
Type: Void
fricas
e:=[subscript('e, [k]) for k in 1..3]
Type: List(Symbol)
fricas
g:=[subscript('g, [k]) for k in 1..4]
Type: List(Symbol)
fricas
h:=[superscript('h, [k]) for k in 1..4]
Type: List(Symbol)
fricas
B1:=OrderedVariableList e
Type: Type
fricas
B2:=OrderedVariableList g
Type: Type
fricas
B3:=OrderedVariableList h
Type: Type
fricas
M1:=FreeModule(R,B1)
Type: Type
fricas
M2:=FreeModule(R,B2)
Type: Type
fricas
M3:=FreeModule(R,B3)
Type: Type
fricas
M12:=TensorProduct(R,B1,B2,M1,M2)
Type: Type
fricas
M23:=TensorProduct(R,B2,B3,M2,M3)
Type: Type
fricas
M123:=TensorProduct(R,Product(B1,B2),B3,M12,M3)
\label{eq12}\hbox{\axiomType{TensorProduct}\ } \left({{\hbox{\axiomType{Expression}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}, \:{\hbox{\axiomType{Product}\ } \left({{\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{e_{1}}, \:{e_{2}}, \:{e_{3}}\right]}\right)}, \:{\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{g_{1}}, \:{g_{2}}, \:{g_{3}}, \:{g_{4}}\right]}\right)}}\right)}, \:{\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{h^{1}}, \:{h^{2}}, \:{h^{3}}, \:{h^{4}}\right]}\right)}, \:{\hbox{\axiomType{TensorProduct}\ } \left({{\hbox{\axiomType{Expression}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}, \:{\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{e_{1}}, \:{e_{2}}, \:{e_{3}}\right]}\right)}, \:{\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{g_{1}}, \:{g_{2}}, \:{g_{3}}, \:{g_{4}}\right]}\right)}, \:{\hbox{\axiomType{FreeModule}\ } \left({{\hbox{\axiomType{Expression}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}, \:{\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{e_{1}}, \:{e_{2}}, \:{e_{3}}\right]}\right)}}\right)}, \:{\hbox{\axiomType{FreeModule}\ } \left({{\hbox{\axiomType{Expression}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}, \:{\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{g_{1}}, \:{g_{2}}, \:{g_{3}}, \:{g_{4}}\right]}\right)}}\right)}}\right)}, \:{\hbox{\axiomType{FreeModule}\ } \left({{\hbox{\axiomType{Expression}\ } \left({\hbox{\axiomType{Integer}\ }}\right)}, \:{\hbox{\axiomType{OrderedVariableList}\ } \left({\left[{h^{1}}, \:{h^{2}}, \:{h^{3}}, \:{h^{4}}\right]}\right)}}\right)}}\right) (12)
Type: Type
fricas
v1:=x*(e.1)::M1 - y*(e.3)::M1
Type: FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3]]))
fricas
v2:=q*(g.2)::M2 + r*(g.4)::M2
Type: FreeModule(Expression(Integer),OrderedVariableList([g[1],g[2],g[3],g[4]]))
fricas
v3:=3*(h.1)::M3 - z*(h.3)::M3
Type: FreeModule(Expression(Integer),OrderedVariableList([h[;1],h[;2],h[;3],h[;4]]))
fricas
t12:=tensor(v1,v2)$M12
Type: TensorProduct?(Expression(Integer),OrderedVariableList([e[1],e[2],e[3]]),OrderedVariableList([g[1],g[2],g[3],g[4]]),FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3]])),FreeModule(Expression(Integer),OrderedVariableList([g[1],g[2],g[3],g[4]])))
fricas
t23:=tensor(v2,v3)$M23
Type: TensorProduct?(Expression(Integer),OrderedVariableList([g[1],g[2],g[3],g[4]]),OrderedVariableList([h[;1],h[;2],h[;3],h[;4]]),FreeModule(Expression(Integer),OrderedVariableList([g[1],g[2],g[3],g[4]])),FreeModule(Expression(Integer),OrderedVariableList([h[;1],h[;2],h[;3],h[;4]])))
fricas
t123:=tensor(t12,v3)$M123
Type: TensorProduct?(Expression(Integer),Product(OrderedVariableList([e[1],e[2],e[3]]),OrderedVariableList([g[1],g[2],g[3],g[4]])),OrderedVariableList([h[;1],h[;2],h[;3],h[;4]]),TensorProduct?(Expression(Integer),OrderedVariableList([e[1],e[2],e[3]]),OrderedVariableList([g[1],g[2],g[3],g[4]]),FreeModule(Expression(Integer),OrderedVariableList([e[1],e[2],e[3]])),FreeModule(Expression(Integer),OrderedVariableList([g[1],g[2],g[3],g[4]]))),FreeModule(Expression(Integer),OrderedVariableList([h[;1],h[;2],h[;3],h[;4]])))
fricas
N:=TensorPower(3,R,B2,M2)
Type: Type
fricas
tt3:=tensor([(g.1)::M2,(g.2)::M2,(g.4)::M2])$N
Type: TensorPower?(3,Expression(Integer),OrderedVariableList([g[1],g[2],g[3],g[4]]),FreeModule(Expression(Integer),OrderedVariableList([g[1],g[2],g[3],g[4]])))
fricas
-- 
construct(e.1,g.1)$Product(B1,B2)::M12
Cannot convert the value from type Product(OrderedVariableList([e[1] ,e[2],e[3]]),OrderedVariableList([g[1],g[2],g[3],g[4]])) to TensorProduct(Expression(Integer),OrderedVariableList([e[1],e[2], e[3]]),OrderedVariableList([g[1],g[2],g[3],g[4]]),FreeModule( Expression(Integer),OrderedVariableList([e[1],e[2],e[3]])), FreeModule(Expression(Integer),OrderedVariableList([g[1],g[2],g[3 ],g[4]]))) .

Tensor product of three or more different spaces:

where
U=[e_1,e_2,e_3], V=[g_1,\ldots,g_4]
and
W=[h^1,\ldots,h^4]
. The problem can be seen in the output of equation (18).

In order to get the output correct how should B12 be set?




Subject: Be Bold !!
( 15 subscribers )
Please rate this page:

AltStyle によって変換されたページ (->オリジナル) /