What method is used to solve equation in Axiom?
(1) -> solve(sin(x)=4/5,x)
solve([a=4,sin(x)=a/5], [a, x])
In the following, a workaround is necessary because of bug #128:
)set output algebra on
)set output tex off
solve([V_q*U_q+V_l*U_l+V_d*U_d+V_a*U_a=U_ma,_ V_q*rho_q+V_l*rho_l+ V_d*rho_d+V_a*rho_a=rho_ma, _ V_q*t_q+V_l*t_l+V_d*t_d+V_a*t_a=t_ma, _ V_q+V_l+V_d+V_a=1], _ [V_q, V_l, V_d, V_a] )
(3) [ [ V_q = ((U_d - U_a)rho_l + (- U_l + U_a)rho_d + (U_l - U_d)rho_a)t_ma + ((- U_d + U_a)rho_ma + (U_ma - U_a)rho_d + (- U_ma + U_d)rho_a)t_l + ((U_l - U_a)rho_ma + (- U_ma + U_a)rho_l + (U_ma - U_l)rho_a)t_d + ((- U_l + U_d)rho_ma + (U_ma - U_d)rho_l + (- U_ma + U_l)rho_d)t_a / ((U_d - U_a)rho_l + (- U_l + U_a)rho_d + (U_l - U_d)rho_a)t_q + ((- U_d + U_a)rho_q + (U_q - U_a)rho_d + (- U_q + U_d)rho_a)t_l + ((U_l - U_a)rho_q + (- U_q + U_a)rho_l + (U_q - U_l)rho_a)t_d + ((- U_l + U_d)rho_q + (U_q - U_d)rho_l + (- U_q + U_l)rho_d)t_a ,
V_l = ((U_d - U_a)rho_ma + (- U_ma + U_a)rho_d + (U_ma - U_d)rho_a)t_q + ((- U_d + U_a)rho_q + (U_q - U_a)rho_d + (- U_q + U_d)rho_a)t_ma + ((U_ma - U_a)rho_q + (- U_q + U_a)rho_ma + (U_q - U_ma)rho_a)t_d + ((- U_ma + U_d)rho_q + (U_q - U_d)rho_ma + (- U_q + U_ma)rho_d)t_a / ((U_d - U_a)rho_l + (- U_l + U_a)rho_d + (U_l - U_d)rho_a)t_q + ((- U_d + U_a)rho_q + (U_q - U_a)rho_d + (- U_q + U_d)rho_a)t_l + ((U_l - U_a)rho_q + (- U_q + U_a)rho_l + (U_q - U_l)rho_a)t_d + ((- U_l + U_d)rho_q + (U_q - U_d)rho_l + (- U_q + U_l)rho_d)t_a ,
V_d = ((- U_l + U_a)rho_ma + (U_ma - U_a)rho_l + (- U_ma + U_l)rho_a)t_q + ((U_l - U_a)rho_q + (- U_q + U_a)rho_l + (U_q - U_l)rho_a)t_ma + ((- U_ma + U_a)rho_q + (U_q - U_a)rho_ma + (- U_q + U_ma)rho_a)t_l + ((U_ma - U_l)rho_q + (- U_q + U_l)rho_ma + (U_q - U_ma)rho_l)t_a / ((U_d - U_a)rho_l + (- U_l + U_a)rho_d + (U_l - U_d)rho_a)t_q + ((- U_d + U_a)rho_q + (U_q - U_a)rho_d + (- U_q + U_d)rho_a)t_l + ((U_l - U_a)rho_q + (- U_q + U_a)rho_l + (U_q - U_l)rho_a)t_d + ((- U_l + U_d)rho_q + (U_q - U_d)rho_l + (- U_q + U_l)rho_d)t_a ,
V_a = ((U_l - U_d)rho_ma + (- U_ma + U_d)rho_l + (U_ma - U_l)rho_d)t_q + ((- U_l + U_d)rho_q + (U_q - U_d)rho_l + (- U_q + U_l)rho_d)t_ma + ((U_ma - U_d)rho_q + (- U_q + U_d)rho_ma + (U_q - U_ma)rho_d)t_l + ((- U_ma + U_l)rho_q + (U_q - U_l)rho_ma + (- U_q + U_ma)rho_l)t_d / ((U_d - U_a)rho_l + (- U_l + U_a)rho_d + (U_l - U_d)rho_a)t_q + ((- U_d + U_a)rho_q + (U_q - U_a)rho_d + (- U_q + U_d)rho_a)t_l + ((U_l - U_a)rho_q + (- U_q + U_a)rho_l + (U_q - U_l)rho_a)t_d + ((- U_l + U_d)rho_q + (U_q - U_d)rho_l + (- U_q + U_l)rho_d)t_a ] ]
)set output algebra off
)set output tex on
solve(v^4+b*v^3+c*v^2+d=0,v)
This didn't work since solve returns solutions expressible as members of the
ground field only. Above, the ground field of v^3+cv^2+d" title="v^4+bv^3+cv^2+d" class="equation" src="images/7926458751673330024-16.0px.png" align="bottom" Style="vertical-align:text-bottom" width="155" height="19"/> defaults to
Fraction Polynomial Integer...
Thus, the proper call is
solve((v^4+b*v^3+c*v^2+d)::EXPR INT=0,v)
But really, you should use 'zeroOf':
zeroOf(v^4+b*v^3+c*v^2+d,v)
In the following, we have to do three things:
Fraction Polynomial Float to a list of
Fraction Polynomial Integer, since solve can only handle the latter, Furthermore, it's %pi, not %PI.
Here is one way to use macros and _ to define more complex names that print nicely in LaTeX form:
K_sc ==> K___{sc_}
mu_sc ==> _\mu___{sc_}
digits(7);
l:= [0.01*(2.25-K_sc)*K_sc/(0.01*%pi*mu_sc*(mu_sc+3.0*K_sc)/ _ (4.0*mu_sc+3.0*K_sc)+2.25)+0.7*(37.0-K_sc)*(4.0*mu_sc/3.0+K_sc)/ _ (4.0*mu_sc/3.0+37.0)+0.29*(2.25-K_sc)*(4.0*mu_sc/3.0+K_sc)/ _ (4.0*mu_sc/3.0+2.25),_ -0.002*mu_sc*(2.0*(2.0*mu_sc/3.0+2.25)/ _ (0.01*%pi*mu_sc*(mu_sc+3.0*K_sc)/ _ (4.0*mu_sc+3.0*K_sc)+2.25)+800.0*mu_sc/ _ (%pi*(2.0*mu_sc*(mu_sc+3.0*K_sc)/ _ (4.0*mu_sc+3.0*K_sc)+mu_sc))+1.0)+0.7*(44.0-mu_sc)*(mu_sc*(8.0*mu_sc+9.0*K_sc)/ _ (6.0*(2.0*mu_sc+K_sc))+mu_sc)/ _ (mu_sc*(8.0*mu_sc+9.0*K_sc)/ _ (6.0*(2.0*mu_sc+K_sc))+44.0)-1.74*(2.0*mu_sc+K_sc)*(mu_sc*(8.0*mu_sc+9.0*K_sc)/ _ (6.0*(2.0*mu_sc+K_sc))+mu_sc)/(8.0*mu_sc+9.0*K_sc)]
-- solve exactly for fractions a:=solve (l::LIST FRAC POLY FRAC INT::LIST FRAC POLY INT);
-- Number of results: #a
-- But only the first one is of interest. -- Display it as a floating point result a.1::List Equation Fraction POLY FLOAT
-- Now check it map(x+->subst(x,(a.1)::List Equation FRAC POLY FLOAT), l)
)clear all
All user variables and function definitions have been cleared.
solve((x=-1+x^2)::EQ EXPR INT,x)
quadratic equation
solve(a*x^2+b*x+c=0,x)
solve(a*x+b=0,x)
quadratic equation
solve(x^2+x-1,x)
radicalSolve(a*x^2+b*x+c=0,x)
L := [ A = 2*P1+P2,B = 2*P2+P1, C = 2*Q1+Q2, D = 2*Q2+Q1]
solve(L,[P1, P2])
The reason is that above Q1 and Q2 are parameters. In such case FriCAS seeks solution in rational functions of Q1 and Q2 and there is no such solution. Instead one should solve also for Q1 and Q2:
)set output tex off
)set output algebra on
solve(L,[P1, P2, Q1, Q2])
- B + 2 A 2 B - A - D + 2 C 2 D - C (8) [[P1 = ---------,P2 = -------, Q1 = ---------, Q2 = -------]] 3 3 3 3
radicalSolve(a*x^3+b*x^2+c*x+d=0,x)
(9) [ x = 2 +---+ 2 (- 9 a \|- 3 + 9 a ) * ROOT +----------------------------------------------+ | 2 2 3 3 2 2 3 |27 a d + (- 18 a b c + 4 b )d + 4 a c - b c 54 a |---------------------------------------------- | 4 \| 108 a + 2 3 - 27 a d + 9 a b c - 2 b / 3 54 a ,3 ^ 2 + +---+ (- 3 a b\|- 3 - 3 a b) * ROOT +----------------------------------------------+ | 2 2 3 3 2 2 3 |27 a d + (- 18 a b c + 4 b )d + 4 a c - b c 54 a |---------------------------------------------- | 4 \| 108 a + 2 3 - 27 a d + 9 a b c - 2 b / 3 54 a , 3 + 2 6 a c - 2 b / 2 +---+ 2 (9 a \|- 3 + 9 a ) * ROOT +----------------------------------------------+ | 2 2 3 3 2 2 3 |27 a d + (- 18 a b c + 4 b )d + 4 a c - b c 54 a |---------------------------------------------- | 4 \| 108 a + 2 3 - 27 a d + 9 a b c - 2 b / 3 54 a , 3 ,
x = 2 +---+ 2 (- 9 a \|- 3 - 9 a ) * ROOT +----------------------------------------------+ | 2 2 3 3 2 2 3 |27 a d + (- 18 a b c + 4 b )d + 4 a c - b c 54 a |---------------------------------------------- | 4 \| 108 a + 2 3 - 27 a d + 9 a b c - 2 b / 3 54 a ,3 ^ 2 + +---+ (- 3 a b\|- 3 + 3 a b) * ROOT +----------------------------------------------+ | 2 2 3 3 2 2 3 |27 a d + (- 18 a b c + 4 b )d + 4 a c - b c 54 a |---------------------------------------------- | 4 \| 108 a + 2 3 - 27 a d + 9 a b c - 2 b / 3 54 a , 3 + 2 - 6 a c + 2 b / 2 +---+ 2 (9 a \|- 3 - 9 a ) * ROOT +----------------------------------------------+ | 2 2 3 3 2 2 3 |27 a d + (- 18 a b c + 4 b )d + 4 a c - b c 54 a |---------------------------------------------- | 4 \| 108 a + 2 3 - 27 a d + 9 a b c - 2 b / 3 54 a , 3 ,
x = 2 9 a * ROOT +----------------------------------------------+ | 2 2 3 3 2 2 3 |27 a d + (- 18 a b c + 4 b )d + 4 a c - b c 54 a |---------------------------------------------- | 4 \| 108 a + 2 3 - 27 a d + 9 a b c - 2 b / 3 54 a ,3 ^ 2 + - 3 a b * ROOT +----------------------------------------------+ | 2 2 3 3 2 2 3 |27 a d + (- 18 a b c + 4 b )d + 4 a c - b c 54 a |---------------------------------------------- | 4 \| 108 a + 2 3 - 27 a d + 9 a b c - 2 b / 3 54 a , 3 + 2 - 3 a c + b / 2 9 a * ROOT +----------------------------------------------+ | 2 2 3 3 2 2 3 |27 a d + (- 18 a b c + 4 b )d + 4 a c - b c 54 a |---------------------------------------------- | 4 \| 108 a + 2 3 - 27 a d + 9 a b c - 2 b / 3 54 a , 3 ]
)set output algebra off
)set output tex on
solve(x^2=y,x)
solve(x3=x0+(x1-x0)*t + (x2-x0) *u,u)
solve([x+y=3,x-y=1], [x, y])
)set output tex off
)set output algebra on
A:=i=(a*x+c*z+e)/(z+g)
c z + a x + e (13) i = ------------- z + g
B:=j=(b*x+d*z+f)/(z+g)
d z + b x + f (14) j = ------------- z + g
solve([A,B], [x, z])
(15) (c g - e)j + (- d g + f)i - c f + d e - a g j + b g i + a f - b e [[x = -------------------------------------,z = ---------------------------] a j - b i - a d + b c a j - b i - a d + b c ]
)set output tex on
)set output algebra off
solve(14=x*1.1^x,x)
There are 20 exposed and 3 unexposed library operations named solve having 2 argument(s) but none was determined to be applicable. Use HyperDoc Browse,or issue )display op solve to learn more about the available operations. Perhaps package-calling the operation or using coercions on the arguments will allow you to apply the operation.
Cannot find a definition or applicable library operation named solve with argument type(s) Equation(Expression(Float)) Variable(x)
Perhaps you should use "@" to indicate the required return type,or "$" to specify which version of the function you need.
)set output algebra on
)set output tex off
zerosOf((1-a)*x^4+x^3+x^2+x+1,x)
(16) [%x6,%x7,
- ROOT 2 2 2 (- 3 a + 6 a - 3)%x7 + ((- 2 a + 4 a - 2)%x6 + 2 a - 2)%x7 + 2 2 (- 3 a + 6 a - 3)%x6 + (2 a - 2)%x6 + 4 a - 3 + (- a + 1)%x7 + (- a + 1)%x6 + 1 / 2 a - 2 ,
ROOT 2 2 2 (- 3 a + 6 a - 3)%x7 + ((- 2 a + 4 a - 2)%x6 + 2 a - 2)%x7 + 2 2 (- 3 a + 6 a - 3)%x6 + (2 a - 2)%x6 + 4 a - 3 + (- a + 1)%x7 + (- a + 1)%x6 + 1 / 2 a - 2 ]
)set output algebra off
)set output tex on
solve( dx_p = ( m / b ) * ( c0 - b * dv_p + c0 * log(c0) - _ c0 * log( c0 - b * dv_p ) + v0 * log(c0) - _ v0 * log( c0 - b * dv_p ) - ( c0 / b ) ),dv_p )
solve(((1+sqrt(5))^n-(1-sqrt(5))^n)/(sqrt(5)*2^n)=10^1001,n)
)set output tex off
)set output algebra on
solve([nnH+2*niH+nnCs+2*niCs = n,(niH+niCs)*niH/nnH = SH, (niH+niCs)*niCs/nnCs = SCs, (niH+nnH)/(niCs+nnCs) = alpha], [nnH, niH, nnCs, niCs])
(19) [ [ nnH = 2 2 ((- 2 SH + 2 SCs)alpha + (- 3 SH + 3 SCs)alpha - SH + SCs)niCs + 2 (- 2 SH alpha + (- SH - SCs)alpha)n + 2 2 2 (- 4 SCs SH + 2 SCs )alpha + (- 6 SCs SH + 4 SCs )alpha + 2 - 2 SCs SH + 2 SCs * niCs + 2 2 2 SCs alpha n + ((2 SCs SH - SCs )alpha + SCs SH - SCs )n / 2 2 (SCs alpha + SCs)n + SCs alpha + SCs ,
niH = 2 ((SH - SCs)alpha + SH - SCs)niCs + 2 2 (SH alpha n + (2 SCs SH - SCs )alpha + 2 SCs SH - 2 SCs )niCs + 2 (- SCs SH + SCs )n / 2 SCs n + SCs ,
nnCs = 2 ((- SH + SCs)alpha - SH + SCs)niCs + (((- SH - SCs)alpha - 2 SCs)n - 2 SCs SH alpha - 2 SCs SH)niCs + 2 SCs n + SCs SH n / 2 2 (SCs alpha + SCs)n + SCs alpha + SCs ,
2 3 ((SH - SCs)alpha + (2 SH - 2 SCs)alpha + SH - SCs)niCs + 2 2 2 (SH alpha + (SH + SCs)alpha + SCs)n + (2 SCs SH - SCs )alpha + 2 2 (5 SCs SH - 3 SCs )alpha + 3 SCs SH - 2 SCs * 2 niCs + 2 2 2 2 ((2 SCs alpha - SCs SH + 3 SCs )n + 2 SCs SH alpha + 2 SCs SH)niCs + 2 2 2 - SCs n - SCs SH n = 0 ] ]
solve((-v^3 * cos(x) * sin(x)^2 / sqrt(v^2 * cos(x)^2 + 2*a*h) - v^2 * sin(x)^2 + v * cos(x) * sqrt(v^2 * cos(x)^2 + 2 * a * h) + v^2 * cos(x)^2)) / a
>> Error detected within library code: too many variables