fricas
(1) -> PI ==> PositiveInteger
Type: Void
fricas
NN ==> NonNegativeInteger
Type: Void
fricas
IF ==> Float
Type: Void
fricas
VIF ==> Vector Float
Type: Void
fricas
MIF ==> Matrix Float
Type: Void
fricas
free eps
Type: Void
fricas
eps:Float:=0.000000001
Type: Float
fricas
free maxIter
Type: Void
fricas
maxIter:PI:=1000
fricas
maxInd(k:PI,n:NN,S:MIF):PI ==
m:PI:=k+1
for i in k+2..n repeat
if abs(S(k,i)) > abs(S(k,m)) then m:=i::PI
return m
Function declaration maxInd : (PositiveInteger, NonNegativeInteger,
Matrix(Float)) -> PositiveInteger has been added to workspace.
Type: Void
fricas
jacobi(M:MIF):Record(ev:VIF,EV:MIF) ==
not square? M => error
S:MIF:=copy M
--eps:Float:=0.000000001
n:NN:=nrows S
i:PI; k:PI; l:PI; m:PI
state:NN
s:IF;c:IF;t:IF;p:IF;y:IF;d:IF;r:IF
ind:List(PI):=[1 for i in 1..n]
changed:List Boolean:=[false for i in 1..n]
e:VIF:=new(n,0$IF)$VIF
E:MIF:=new(n,n,0$IF)$MIF
E:=diagonalMatrix [1$IF for i in 1..n]
A:IF; B:IF
count:NN:=0
state:=n
for k in 1..n repeat
ind.k:=maxInd(k,n,S)
e.k:=S(k,k)
changed.k:=true
while (state ~= 0) and (count < maxIter) repeat
m:=1
for k in 2..n-1 repeat
if abs(S(k,ind.k)) > abs(S(m,ind.m)) then
m:=k
k:=m
l:=ind.m
p:=S(k,l)
--
y:=(e.l - e.k)/2
d:=abs(y)+sqrt(p^2+y^2)
r:=sqrt(p^2+d^2)
c:=d*recip(r)
s:=p*recip(r)
t:=p^2*recip(d)
if y < 0$Float then
s:=-s
t:=-t
S(k,l):=0$IF
--
y:IF:=e.k
e.k:=y-t
if changed.k and abs(t)<= eps then
changed.k:=false
state:=state-1
else
if (not changed.k) and abs(t)> eps then
changed.k:=true
state:=state+1
--
y:IF:=e.l
e.l:=y+t
if changed.l and abs(t)<= eps then
changed.l:=false
state:=state-1
else
if (not changed.l) and abs(t)> eps then
changed.l:=true
state:=state+1
--
for i in 1..k-1 repeat
A:=S(i,k); B:=S(i,l)
S(i,k):=c*A-s*B
S(i,l):=s*A+c*B
for i in k+1..l-1 repeat
A:=S(k,i); B:=S(i,l)
S(k,i):=c*A-s*B
S(i,l):=s*A+c*B
for i in l+1..n repeat
A:=S(k,i); B:=S(l,i)
S(k,i):=c*A-s*B
S(l,i):=s*A+c*B
--
for i in 1..n repeat
A:=E(i,k); B:=E(i,l)
E(i,k):=c*A-s*B
E(i,l):=s*A+c*B
--
ind.k := maxInd(k,n,S)
ind.l := maxInd(l,n,S)
--
count:=count+1
output([count,state])
--
return [e,E]$Record(ev:VIF,EV:MIF)
Function declaration jacobi : Matrix(Float) -> Record(ev: Vector(
Float),EV: Matrix(Float)) has been added to workspace.
Type: Void
fricas
S0:= matrix [[4,-30,60,-35], [-30,300,-675,420],
[60,-675,1620,-1050],[-35,420,-1050,700]]
\label{eq3}\left[ \begin{array}{cccc} 4 & -{30}&{60}& -{35} \ -{30}&{300}& -{675}&{420} \ {60}& -{675}&{1620}& -{1050} \ -{35}&{420}& -{1050}&{700}
(3)
Type: Matrix(Integer)
fricas
M:=map(s+->s::Float,S0)
\label{eq4}\left[ \begin{array}{cccc} {4.0}& -{30.0}&{60.0}& -{35.0} \ -{30.0}&{300.0}& -{675.0}&{420.0} \ {60.0}& -{675.0}&{1620.0}& -{1050.0} \ -{35.0}&{420.0}& -{1050.0}&{700.0}
(4)
Type: Matrix(Float)
fricas
R:=jacobi(M)
fricas
Compiling function maxInd with type (PositiveInteger,
NonNegativeInteger, Matrix(Float)) -> PositiveInteger
fricas
Compiling function jacobi with type Matrix(Float) -> Record(ev:
Vector(Float),EV: Matrix(Float))
fricas
Compiling function G39 with type Integer -> Boolean
fricas
Compiling function G41 with type NonNegativeInteger -> Boolean
[1, 4]
[2, 4]
[3, 4]
[4, 4]
[5, 4]
[6, 4]
[7, 4]
[8, 4]
[9, 4]
[10, 4]
[11, 4]
[12, 4]
[13, 2]
[14, 1]
[15, 0]
7189046227}, \:{37.1014913651 \ 27658
187}, \: \right.
\
\
\displaystyle
\left.{2585.2538109289 \
223144}, \:{1.4780548447 \ 7813691
15}\right]
" title="
\label{eq5}\begin{array}{@{}l}
\displaystyle
\left[{
\begin{array}{@{}l}
\displaystyle
ev ={
\begin{array}{@{}l}
\displaystyle
\left[{0.1666428611 \
7189046227}, \:{37.1014913651 \ 27658
187}, \: \right.
\
\
\displaystyle
\left.{2585.2538109289 \
223144}, \:{1.4780548447 \ 7813691
15}\right]
" class="equation" src="images/8247255663144257809-16.0px.png" align="bottom" Style="vertical-align:text-bottom" width="816" height="1056"/>
(5)
Type: Record(ev: Vector(Float),EV: Matrix(Float))
fricas
-- Eigenvalues
R.ev
7189046227}, \:{37.1014913651 \ 27658
187}, \: \right.
\
\
\displaystyle
\left.{2585.2538109289 \
223144}, \:{1.4780548447 \ 7813691
15}\right]
" title="
\label{eq6}\begin{array}{@{}l}
\displaystyle
\left[{0.1666428611 \
7189046227}, \:{37.1014913651 \ 27658
187}, \: \right.
\
\
\displaystyle
\left.{2585.2538109289 \
223144}, \:{1.4780548447 \ 7813691
15}\right]
" class="equation" src="images/862784580634768105-16.0px.png" align="bottom" Style="vertical-align:text-bottom" width="373" height="57"/>
(6)
Type: Vector(Float)
fricas
-- Eigenvectors
R.EV
6404284182}& -{0.1791862905 \ 3191911246}&{0.0
291933231 \
7921032382 \ 1}& -{0.5820756994 \
9722239046}
\
{0.4519231209 \ 0048280228}&{0.7419177906 \
0266858682}& -{0.3
287120558 \ 2291241902}&{0.3705021850 \
6710175857}
\
{0.3224163985 \ 8196511675}& -{0.1002281368 \
8300231268}&{0.7
914111458 \ 4119456575}&{0.5095786345 \
0180583398}
\
{0.2521611696 \ 8918686461}& -{0.6382825282 \
3465850687}& -{0.5145527499 \ 457719896}&{0.5140482722 \_ 2216914806}
" title="
\label{eq7}\left[
\begin{array}{cccc}
{0.7926082911 \
6404284182}& -{0.1791862905 \ 3191911246}&{0.0
291933231 \
7921032382 \ 1}& -{0.5820756994 \
9722239046}
\
{0.4519231209 \ 0048280228}&{0.7419177906 \
0266858682}& -{0.3
287120558 \ 2291241902}&{0.3705021850 \
6710175857}
\
{0.3224163985 \ 8196511675}& -{0.1002281368 \
8300231268}&{0.7
914111458 \ 4119456575}&{0.5095786345 \
0180583398}
\
{0.2521611696 \ 8918686461}& -{0.6382825282 \
3465850687}& -{0.5145527499 \ 457719896}&{0.5140482722 \_ 2216914806}
" class="equation" src="images/7776957668894557956-16.0px.png" align="bottom" Style="vertical-align:text-bottom" width="809" height="75"/>
(7)
Type: Matrix(Float)
fricas
checkResult(R,M) ==
n:=nrows M
for i in 1..n repeat
v:=column(R.EV,i)
d:=M*v-R.ev.i*v
output(sqrt(dot(d,d)))
Type: Void
fricas
checkResult(R,M)
fricas
Compiling function checkResult with type (Record(ev: Vector(Float),
EV: Matrix(Float)), Matrix(Float)) -> Void
0.5525209110_3822153225 E -10
0.2051229718_0345356366 E -6
0.2051229643_5393269185 E -6
0.2534588919_4236924534 E -13
Type: Void