The class of totally ordered sets, that is, sets such that for each pair of elements (a, b)
exactly one of the following relations holds a < b or a=b or b < a
and the relation is transitive, i.e. a < b and b < c => a < c.
This order should be the natural order on given structure.
(1) -> )sh OrderedSet
OrderedSet is a category constructor Abbreviation for OrderedSet is ORDSET This constructor is exposed in this frame. ------------------------------- Operations --------------------------------
?<? : (%,%) -> Boolean ?<=? : (%, %) -> Boolean ?=? : (%, %) -> Boolean ?>? : (%, %) -> Boolean ?>=? : (%, %) -> Boolean coerce : % -> OutputForm latex : % -> String max : (%, %) -> % min : (%, %) -> % smaller? : (%, %) -> Boolean ?~=? : (%, %) -> Boolean