Note

Go to the end to download the full example code or to run this example in your browser via JupyterLite or Binder.

Support Vector Regression (SVR) using linear and non-linear kernels#

Toy example of 1D regression using linear, polynomial and RBF kernels.

# Authors: The scikit-learn developers
# SPDX-License-Identifier: BSD-3-Clause
importmatplotlib.pyplotasplt
importnumpyasnp
fromsklearn.svmimport SVR

Generate sample data#

X = np.sort (5 * np.random.rand (40, 1), axis=0)
y = np.sin (X).ravel()
# add noise to targets
y[::5] += 3 * (0.5 - np.random.rand (8))

Fit regression model#

svr_rbf = SVR (kernel="rbf", C=100, gamma=0.1, epsilon=0.1)
svr_lin = SVR (kernel="linear", C=100, gamma="auto")
svr_poly = SVR (kernel="poly", C=100, gamma="auto", degree=3, epsilon=0.1, coef0=1)

Look at the results#

lw = 2
svrs = [svr_rbf, svr_lin, svr_poly]
kernel_label = ["RBF", "Linear", "Polynomial"]
model_color = ["m", "c", "g"]
fig, axes = plt.subplots (nrows=1, ncols=3, figsize=(15, 10), sharey=True)
for ix, svr in enumerate(svrs):
 axes[ix].plot(
 X,
 svr.fit(X, y).predict(X),
 color=model_color[ix],
 lw=lw,
 label="{} model".format(kernel_label[ix]),
 )
 axes[ix].scatter(
 X[svr.support_],
 y[svr.support_],
 facecolor="none",
 edgecolor=model_color[ix],
 s=50,
 label="{} support vectors".format(kernel_label[ix]),
 )
 axes[ix].scatter(
 X[np.setdiff1d (np.arange (len(X)), svr.support_)],
 y[np.setdiff1d (np.arange (len(X)), svr.support_)],
 facecolor="none",
 edgecolor="k",
 s=50,
 label="other training data",
 )
 axes[ix].legend(
 loc="upper center",
 bbox_to_anchor=(0.5, 1.1),
 ncol=1,
 fancybox=True,
 shadow=True,
 )
fig.text(0.5, 0.04, "data", ha="center", va="center")
fig.text(0.06, 0.5, "target", ha="center", va="center", rotation="vertical")
fig.suptitle("Support Vector Regression", fontsize=14)
plt.show ()
Support Vector Regression

Total running time of the script: (0 minutes 5.648 seconds)

Related examples

Comparison of kernel ridge regression and SVR

Comparison of kernel ridge regression and SVR

Comparison between grid search and successive halving

Comparison between grid search and successive halving

RBF SVM parameters

RBF SVM parameters

Plot classification probability

Plot classification probability

Gallery generated by Sphinx-Gallery