Note
Go to the end to download the full example code or to run this example in your browser via JupyterLite or Binder.
Plot Hierarchical Clustering Dendrogram#
This example plots the corresponding dendrogram of a hierarchical clustering using AgglomerativeClustering and the dendrogram method available in scipy.
Hierarchical Clustering Dendrogramimportnumpyasnp frommatplotlibimport pyplot as plt fromscipy.cluster.hierarchyimport dendrogram fromsklearn.clusterimport AgglomerativeClustering fromsklearn.datasetsimport load_iris defplot_dendrogram(model, **kwargs): # Create linkage matrix and then plot the dendrogram # create the counts of samples under each node counts = np.zeros (model.children_.shape[0]) n_samples = len(model.labels_) for i, merge in enumerate(model.children_): current_count = 0 for child_idx in merge: if child_idx < n_samples: current_count += 1 # leaf node else: current_count += counts[child_idx - n_samples] counts[i] = current_count linkage_matrix = np.column_stack ( [model.children_, model.distances_, counts] ).astype(float) # Plot the corresponding dendrogram dendrogram (linkage_matrix, **kwargs) iris = load_iris () X = iris.data # setting distance_threshold=0 ensures we compute the full tree. model = AgglomerativeClustering (distance_threshold=0, n_clusters=None) model = model.fit(X) plt.title ("Hierarchical Clustering Dendrogram") # plot the top three levels of the dendrogram plot_dendrogram(model, truncate_mode="level", p=3) plt.xlabel ("Number of points in node (or index of point if no parenthesis).") plt.show ()
Total running time of the script: (0 minutes 0.071 seconds)
Related examples
Understanding the decision tree structure
Understanding the decision tree structure
A demo of structured Ward hierarchical clustering on an image of coins
A demo of structured Ward hierarchical clustering on an image of coins
Comparing different hierarchical linkage methods on toy datasets
Comparing different hierarchical linkage methods on toy datasets
Hierarchical clustering with and without structure
Hierarchical clustering with and without structure