Changeset 200 for docs/trunk/omega-test-slides/omega-test.tex
- Timestamp:
- Jan 31, 2008, 1:08:23 AM (18 years ago)
- Author:
- neil.c.c.brown
- Message:
-
Various last-minute alterations
- File:
-
- 1 edited
- docs/trunk/omega-test-slides/omega-test.tex (modified) (11 diffs)
Legend:
- Unmodified
- Added
- Removed
-
docs/trunk/omega-test-slides/omega-test.tex
r199 r200 514 514 \[ a\beta \leq abx \leq b\alpha \] 515 515 516 We can eliminate $x$ ($a\beta \leq b\alpha$; termed $C_R,ドル the ``real'' shadow) but there may (削除) be solutions to that but not the original (削除ここまで).516 We can eliminate $x$ ($a\beta \leq b\alpha$; termed $C_R,ドル the ``real'' shadow) but there may (追記) then be solutions to that were not originally present (追記ここまで). 517 517 518 518 \begin{itemize} … … 678 678 \end{itemize} 679 679 ~\\ 680 \begin{tabular}{cccc} 680 681 682 \begin{tabular}{ccc|c} 681 683 $C_R = C_D$ & $\operatorname{hasIntSol}(C_R)$ & $\operatorname{hasIntSol}(C_D)$ & $\operatorname{hasIntSol}(C)$ \\ 682 684 \hline 683 (削除) (削除ここまで)\\685 (追記) ~&~&~& (追記ここまで)\\ 684 686 %\tick & & & $ = \operatorname{hasIntSol}(C_R)$ \\ 685 687 \tick & \tick & & \tick \\ 686 688 \tick & \cross & & \cross \\ 687 \cross & \cross & & \cross \\ 688 \cross & \tick & \tick & \tick \\ 689 \\ 690 \hline 691 \only<2->{\cross & \tick & \cross & Difficult! \\} 689 \only<2->{\cross & \cross & & \cross \\} 690 \only<3->{\cross & \tick & \tick & \tick \\} 691 \only<4->{\cross & \tick & \cross & Difficult! \\} 692 \only<-1>{~&~&~&\\} 693 \only<-2>{~&~&~&\\} 694 \only<-3>{~&~&~&\\} 692 695 \end{tabular} 693 696 … … 702 705 703 706 \begin{frame}[fragile] 704 \frametitle{What do we know in the difficult case?} 705 \begin{itemize} 707 \frametitle{What Do We Know in the Difficult Case?} 708 \begin{itemize} 709 \item Recall: $hasIntSol(C_D) \implies b\alpha - a\beta > ab - a - b$ 706 710 \item $\lnot hasIntSol(C_D) \implies b\alpha - a\beta \leq ab - a - b$ 707 711 \item $hasIntSol(C_R) \implies a\beta \leq b\alpha$ 708 \item If there is a solution: 709 \begin{itemize} 710 \item $\exists x: a\beta \leq abx \leq b\alpha$ 711 \item $\therefore \exists x: a\beta \leq abx \leq ab - a - b + a\beta$ 712 \end{itemize} 713 \end{itemize} 714 \end{frame} 715 716 \begin{frame}[fragile] 717 \frametitle{Narrowing it down} 712 \end{itemize} 713 \end{frame} 714 715 \begin{frame}[fragile] 716 \frametitle{Narrowing It Down} 718 717 \begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line-3.png} \end{center} 719 718 \begin{itemize} … … 765 764 766 765 \begin{frame}[fragile] 767 \frametitle{Modulo (REM) -- (削除) constant d (削除ここまで)ivisor}766 \frametitle{Modulo (REM) -- (追記) Constant D (追記ここまで)ivisor} 768 767 \begin{itemize} 769 768 \item $x \operatorname{REM} y = x - \operatorname{sign}(x)|y| \lfloor \frac{|x|}{|y|} \rfloor$ … … 796 795 797 796 \begin{frame}[fragile] 798 \frametitle{Modulo (REM) -- (削除) variable d (削除ここまで)ivisor}797 \frametitle{Modulo (REM) -- (追記) Variable D (追記ここまで)ivisor} 799 798 \begin{itemize} 800 799 \item Previous solution, $x \operatorname{REM} y = x + m|y|$ doesn't work when $m$ and $y$ are both unknown … … 810 809 811 810 \begin{frame}[fragile] 812 \frametitle{Modulo (REM) -- (削除) variable d (削除ここまで)ivisor}811 \frametitle{Modulo (REM) -- (追記) Variable D (追記ここまで)ivisor} 813 812 \begin{itemize} 814 813 \item Instead of $a \leq 0,ドル consider two cases (recall: $a$ is a multiple of $y$): … … 820 819 \end{itemize} 821 820 \begin{lstlisting} 822 [n]INT as: (削除) -- not valid occam (yet?) (削除ここまで)821 [n]INT as:(追記) (追記ここまで) 823 822 PAR i = 0 FOR n 824 823 as[(i + 1) REM n] := 42 … … 873 872 \begin{itemize} 874 873 \item For parallel replication (e.g. 0 FOR 10), we introduce a ghost variable $i'$: 0ドル \leq i < i' \leq 9$ 875 \item Effectively checking for any two arbitrary (non-equal) indices 876 \item Must check both ways! 877 \begin{itemize} 878 \item \lstinline|a[i] := a[i+1]| is `safe' for $i = i' + 1,ドル but not $i + 1 = i'$ 879 \end{itemize} 880 \end{itemize} 874 \item Effectively checking for any two arbitrary (non-equal) indices: 875 \end{itemize} 876 \begin{lstlisting} 877 PAR 878 a[i] := a[i + 1] 879 a[i'] := a[i' + 1] 880 \end{lstlisting} 881 \end{frame} 882 883 \begin{frame}[fragile] 884 \frametitle{Replication} 885 \begin{lstlisting} 886 PAR 887 a[i] := a[i + 1] 888 a[i'] := a[i' + 1] 889 \end{lstlisting} 890 \begin{itemize} 891 \item Recall: 0ドル \leq i < i' \leq 9$ 892 \item $i = i'$ \cross 893 \item $i = i' + 1$ \cross 894 \item $i + 1 = i'$ \tick 895 \end{itemize} 896 881 897 \end{frame} 882 898 … … 1066 1082 1067 1083 \begin{frame}[fragile] 1068 \frametitle{Future (削除) work -- r (削除ここまで)eachability}1084 \frametitle{Future (追記) Work -- R (追記ここまで)eachability} 1069 1085 %Reachability 1070 1086 \begin{itemize} … … 1083 1099 1084 1100 \begin{frame}[fragile] 1085 \frametitle{Future (削除) work -- advanced r (削除ここまで)eachability}1101 \frametitle{Future (追記) Work -- Advanced R (追記ここまで)eachability} 1086 1102 We could use conditions in \lstinline|IF| and \lstinline|WHILE| as constraints: 1087 1103 \begin{lstlisting} … … 1097 1113 1098 1114 \begin{frame} 1099 \frametitle{Future (削除) work -- optimising out c (削除ここまで)hecks}1115 \frametitle{Future (追記) Work -- Optimising out C (追記ここまで)hecks} 1100 1116 \begin{itemize} 1101 1117 \item We could use the integer analysis to check if array indexes are always within bounds
Note:
See TracChangeset
for help on using the changeset viewer.