Context Navigation



Ignore:
Timestamp:
Jan 31, 2008, 1:08:23 AM (18 years ago)
Author:
neil.c.c.brown
Message:

Various last-minute alterations

File:
1 edited

Legend:

Unmodified
Added
Removed
  • docs/trunk/omega-test-slides/omega-test.tex

    r199 r200
    514514\[ a\beta \leq abx \leq b\alpha \]
    515515
    516We can eliminate $x$ ($a\beta \leq b\alpha$; termed $C_R,ドル the ``real'' shadow) but there may (削除) be solutions to that but not the original (削除ここまで).
    516We can eliminate $x$ ($a\beta \leq b\alpha$; termed $C_R,ドル the ``real'' shadow) but there may (追記) then be solutions to that were not originally present (追記ここまで).
    517517
    518518\begin{itemize}
    678678\end{itemize}
    679679~\\
    680\begin{tabular}{cccc}
    680
    681
    682\begin{tabular}{ccc|c}
    681683$C_R = C_D$ & $\operatorname{hasIntSol}(C_R)$ & $\operatorname{hasIntSol}(C_D)$ & $\operatorname{hasIntSol}(C)$ \\
    682684\hline
    683(削除) (削除ここまで)\\
    685(追記) ~&~&~& (追記ここまで)\\
    684686%\tick & & & $ = \operatorname{hasIntSol}(C_R)$ \\
    685687\tick & \tick & & \tick \\
    686688\tick & \cross & & \cross \\
    687\cross & \cross & & \cross \\
    688\cross & \tick & \tick & \tick \\
    689 \\
    690 \hline
    691\only<2->{\cross & \tick & \cross & Difficult! \\}
    689\only<2->{\cross & \cross & & \cross \\}
    690\only<3->{\cross & \tick & \tick & \tick \\}
    691\only<4->{\cross & \tick & \cross & Difficult! \\}
    692\only<-1>{~&~&~&\\}
    693\only<-2>{~&~&~&\\}
    694\only<-3>{~&~&~&\\}
    692695\end{tabular}
    693696
    702705
    703706\begin{frame}[fragile]
    704\frametitle{What do we know in the difficult case?}
    705\begin{itemize}
    707\frametitle{What Do We Know in the Difficult Case?}
    708\begin{itemize}
    709\item Recall: $hasIntSol(C_D) \implies b\alpha - a\beta > ab - a - b$
    706710\item $\lnot hasIntSol(C_D) \implies b\alpha - a\beta \leq ab - a - b$
    707711\item $hasIntSol(C_R) \implies a\beta \leq b\alpha$
    708\item If there is a solution:
    709 \begin{itemize}
    710 \item $\exists x: a\beta \leq abx \leq b\alpha$
    711 \item $\therefore \exists x: a\beta \leq abx \leq ab - a - b + a\beta$
    712 \end{itemize}
    713\end{itemize}
    714\end{frame}
    715
    716\begin{frame}[fragile]
    717\frametitle{Narrowing it down}
    712\end{itemize}
    713\end{frame}
    714
    715\begin{frame}[fragile]
    716\frametitle{Narrowing It Down}
    718717\begin{center} \includegraphics[width=100mm]{Omega-Test-Number-Line-3.png} \end{center}
    719718\begin{itemize}
    765764
    766765\begin{frame}[fragile]
    767\frametitle{Modulo (REM) -- (削除) constant d (削除ここまで)ivisor}
    766\frametitle{Modulo (REM) -- (追記) Constant D (追記ここまで)ivisor}
    768767\begin{itemize}
    769768\item $x \operatorname{REM} y = x - \operatorname{sign}(x)|y| \lfloor \frac{|x|}{|y|} \rfloor$
    796795
    797796\begin{frame}[fragile]
    798\frametitle{Modulo (REM) -- (削除) variable d (削除ここまで)ivisor}
    797\frametitle{Modulo (REM) -- (追記) Variable D (追記ここまで)ivisor}
    799798\begin{itemize}
    800799\item Previous solution, $x \operatorname{REM} y = x + m|y|$ doesn't work when $m$ and $y$ are both unknown
    810809
    811810\begin{frame}[fragile]
    812\frametitle{Modulo (REM) -- (削除) variable d (削除ここまで)ivisor}
    811\frametitle{Modulo (REM) -- (追記) Variable D (追記ここまで)ivisor}
    813812\begin{itemize}
    814813\item Instead of $a \leq 0,ドル consider two cases (recall: $a$ is a multiple of $y$):
    820819\end{itemize}
    821820\begin{lstlisting}
    822[n]INT as:(削除) -- not valid occam (yet?) (削除ここまで)
    821[n]INT as:(追記) (追記ここまで)
    823822PAR i = 0 FOR n
    824823 as[(i + 1) REM n] := 42
    873872\begin{itemize}
    874873\item For parallel replication (e.g. 0 FOR 10), we introduce a ghost variable $i'$: 0ドル \leq i < i' \leq 9$
    875\item Effectively checking for any two arbitrary (non-equal) indices
    876\item Must check both ways!
    877 \begin{itemize}
    878 \item \lstinline|a[i] := a[i+1]| is `safe' for $i = i' + 1,ドル but not $i + 1 = i'$
    879 \end{itemize}
    880\end{itemize}
    874\item Effectively checking for any two arbitrary (non-equal) indices:
    875\end{itemize}
    876\begin{lstlisting}
    877PAR
    878 a[i] := a[i + 1]
    879 a[i'] := a[i' + 1]
    880\end{lstlisting}
    881\end{frame}
    882
    883\begin{frame}[fragile]
    884\frametitle{Replication}
    885\begin{lstlisting}
    886PAR
    887 a[i] := a[i + 1]
    888 a[i'] := a[i' + 1]
    889\end{lstlisting}
    890\begin{itemize}
    891\item Recall: 0ドル \leq i < i' \leq 9$
    892\item $i = i'$ \cross
    893\item $i = i' + 1$ \cross
    894\item $i + 1 = i'$ \tick
    895\end{itemize}
    896
    881897\end{frame}
    882898
    10661082
    10671083\begin{frame}[fragile]
    1068\frametitle{Future (削除) work -- r (削除ここまで)eachability}
    1084\frametitle{Future (追記) Work -- R (追記ここまで)eachability}
    10691085%Reachability
    10701086\begin{itemize}
    10831099
    10841100\begin{frame}[fragile]
    1085\frametitle{Future (削除) work -- advanced r (削除ここまで)eachability}
    1101\frametitle{Future (追記) Work -- Advanced R (追記ここまで)eachability}
    10861102We could use conditions in \lstinline|IF| and \lstinline|WHILE| as constraints:
    10871103\begin{lstlisting}
    10971113
    10981114\begin{frame}
    1099\frametitle{Future (削除) work -- optimising out c (削除ここまで)hecks}
    1115\frametitle{Future (追記) Work -- Optimising out C (追記ここまで)hecks}
    11001116\begin{itemize}
    11011117\item We could use the integer analysis to check if array indexes are always within bounds
Note: See TracChangeset for help on using the changeset viewer.

AltStyle によって変換されたページ (->オリジナル) /