- Timestamp:
- Dec 31, 2007, 2:31:45 PM (18 years ago)
- Author:
- neil.c.c.brown
- Message:
-
Rearranged the equality section so that the points appear to the right of square graphs (so it all fits on one slide)
- Location:
- docs/trunk/omega-test-slides
- Files:
-
- 3 edited
- equality-incon.gnu (modified) (2 diffs)
- equality-nosol.gnu (modified) (2 diffs)
- omega-test.tex (modified) (4 diffs)
Legend:
- Unmodified
- Added
- Removed
-
docs/trunk/omega-test-slides/equality-incon.gnu
r136 r145 1 1 load "2d-gnuplot-settings.inc" 2 (追記) (追記ここまで) 3 (追記) set terminal png truecolor size 600,600 enhanced rounded font "FreeSansBold" 12 (追記ここまで) 2 4 3 5 set title "Inconsistent Equations" … … 7 9 plot "points-1-3.inc" with points title "" pt 1 ps 2 lt -1 8 10 9 set key (削除) bottom right (削除ここまで)11 set key (追記) at 4, 0.25 (追記ここまで) 10 12 11 plot ((2*x + 1)/3) title "3y = 2x + 1" ls 3 with lines, ((2*x + 2)/3) title "3y = 2x + 2" ls 4 with lines 13 plot ((2*x + 1)/3) title "{/*3 3y = 2x + 1}" ls 3 with lines 14 15 set key at 4, 0.65 16 17 plot ((2*x + 2)/3) title "{/*3 3y = 2x + 2}" ls 4 with lines -
docs/trunk/omega-test-slides/equality-nosol.gnu
r135 r145 1 1 load "2d-gnuplot-settings.inc" 2 (追記) (追記ここまで) 3 (追記) set terminal png truecolor size 600,600 enhanced rounded font "FreeSansBold" 12 (追記ここまで) 2 4 3 5 set title "Unsolveable Equation" … … 9 11 set key bottom right 10 12 11 plot x + 0.5 title " (削除) (削除ここまで)2y = 2x + 1" ls 3 with lines13 plot x + 0.5 title "(追記) {/*3 (追記ここまで)2y = 2x + 1" ls 3 with lines -
docs/trunk/omega-test-slides/omega-test.tex
r144 r145 154 154 \item $x_0 = 1, \therefore a_0$ is the constant term 155 155 \end{itemize} 156 \item For readability, equations (削除) here will usually (削除ここまで)be written in the form:157 \begin{itemize} (削除) (削除ここまで)158 \item $a (削除) x + by + cz = d$ (削除ここまで)156 \item For readability, equations (追記) on graphs will (追記ここまで) be written in the form: 157 \begin{itemize}(追記) (追記ここまで) 158 \item $a(追記) y = bx + c$ (technically: $-a_1 x_1 = a_2 x_2 + a_0$) (追記ここまで) 159 159 \end{itemize} 160 160 \item Equations are kept normalised (GCD of coefficients $a_1 \cdots a_n$ is 1) … … 171 171 %TODO mention integer grid, and how this relates to the equations 172 172 173 (削除) \TurnLogoOff (削除ここまで)174 (削除) (削除ここまで)175 (削除) \begin{frame}[fragile] (削除ここまで)176 (削除) \fullframegraph{Unsolveable Equality}{equality-nosol} (削除ここまで)177 (削除) \end{frame} (削除ここまで)178 (削除) (削除ここまで)179 (削除) \TurnLogoOn (削除ここまで)180 (削除) (削除ここまで)181 173 \begin{frame}[fragile] 182 174 \frametitle{Unsolveable Equality} 183 \begin{itemize} 184 \item The equation 2ドルx = 2y + 1$ has no integer solutions 185 \begin{itemize} 186 \item Rule: if the GCD of the variable coeffs does not divide the constant, there 187 is no integer solution. 188 \end{itemize} 189 \end{itemize} 190 \end{frame} 191 192 \TurnLogoOff 193 194 \begin{frame}[fragile] 195 \fullframegraph{Inconsistent Equalities}{equality-incon} 196 \end{frame} 197 198 \TurnLogoOn 199 200 \begin{frame}[fragile] 201 \frametitle{Equalities} 202 \begin{itemize} 203 \item If two equations have identical coefficients ($a_1 \cdots a_n$): 204 \begin{itemize} 205 \item If the constant terms ($a_0$) are equal, remove one of the equations 206 \item If the constant terms are not equal, there is no solution 207 \end{itemize} 208 \end{itemize} 175 \begin{columns} 176 \column{60mm} 177 \includegraphics[width=60mm]{equality-nosol} 178 \column{45mm} 179 If the GCD of the variable coeffs ($a_1 \cdots a_n$) 180 does not divide the constant ($a_0$), 181 there is no integer solution 182 \end{columns} 183 \end{frame} 184 185 \begin{frame}[fragile] 186 \frametitle{Inconsistent Equalities} 187 \begin{columns} 188 \column{60mm} 189 \includegraphics[width=60mm]{equality-incon} 190 \column{45mm} 191 If two equations have identical coefficients ($a_1 \cdots a_n$) but different constant terms ($a_0$), there is no solution 192 \end{columns} 209 193 \end{frame} 210 194 … … 216 200 %\end{frame} 217 201 202 (追記) %TODO maybe add an extra slide explaining why we don't just use rational numbers (追記ここまで) 203 (追記) (追記ここまで) 218 204 \begin{frame} 219 205 \frametitle{Equality Solving Method} … … 223 209 \begin{itemize} 224 210 \item $x_k = -\operatorname{sign}(a_k)m\sigma + \displaystyle\sum_{i \in V - \{k\}} \operatorname{sign}(a_k)(a_i \widehat{\operatorname{mod}} m)x_i$ 211 (追記) \item Always reduces absolute value of coefficients (追記ここまで) 225 212 \item See paper for details (no simple explanation) 226 213 %TODO try to think of a simple explanation, if possible
Note:
See TracChangeset
for help on using the changeset viewer.