- Timestamp:
- Dec 31, 2007, 12:35:57 PM (18 years ago)
- Author:
- neil.c.c.brown
- Message:
-
Tried to clear up the formatting of the constant divisor slide (for modulo)
- File:
-
- 1 edited
- docs/trunk/omega-test-slides/omega-test.tex (modified) (2 diffs)
Legend:
- Unmodified
- Added
- Removed
-
docs/trunk/omega-test-slides/omega-test.tex
r143 r144 684 684 \begin{itemize} 685 685 \item $x \operatorname{REM} y = x - \operatorname{sign}(x)|y| \lfloor \frac{|x|}{|y|} \rfloor$ 686 (追記) \only<1>{ (追記ここまで) 687 (追記) \item $y = 0$ implies division by zero (追記ここまで) 688 (追記) \item $y = \pm 1$ will almost certainly be unsafe ($\forall x: x \operatorname{REM} \pm 1 = 0$) (追記ここまで) 689 (追記) } (追記ここまで) 690 (追記) \only<2>{ (追記ここまで) 686 691 \item Consider all three possibilities: 687 \begin{itemize} 688 \item $x = 0, x \operatorname{REM} y = 0$ 689 \item $m = -\lfloor \frac{|x|}{|y|} \rfloor: x \geq 1, x \operatorname{REM} y = x + m|y|, |y| - 1 \geq x + m|y| \geq 0, m \leq 0$ 690 \item $m = \lfloor \frac{|x|}{|y|} \rfloor: x \leq -1, x \operatorname{REM} y = x + m|y|, 1 - |y| \leq x + m|y| \leq 0, m \geq 0$ 691 \end{itemize} 692 } 693 \end{itemize} 694 \only<2> 695 { 696 \begin{tabular}{lll} 697 & $x = 0,ドル & $x \operatorname{REM} y = 0$ \\ 698 \hline 699 $m = -\lfloor \frac{|x|}{|y|} \rfloor$:& $x \geq 1,ドル& $x \operatorname{REM} y = x + m|y|,ドル \\ 700 & $m \leq 0,ドル& $|y| - 1 \geq x + m|y| \geq 0$ \\ 701 \hline 702 $m = \lfloor \frac{|x|}{|y|} \rfloor$:& $x \leq -1,ドル& $x \operatorname{REM} y = x + m|y|,ドル \\ 703 & $m \geq 0,ドル & 1ドル - |y| \leq x + m|y| \leq 0$ \\ 704 \end{tabular} 692 705 \note{Technically, the first case is subsumed by the latter two. 693 706 But I expect that it will prove useful for efficiency reasons; … … 695 708 deal with. The first problem should therefore be easy and quick. 696 709 } 697 \item $y = 0$ implies division by zero 698 \item $y = \pm 1$ will almost certainly be unsafe ($\forall x: x \operatorname{REM} \pm 1 = 0$) 699 \end{itemize} 700 710 } 701 711 \end{frame} 702 712
Note:
See TracChangeset
for help on using the changeset viewer.