Weird Number Sequence

I find number sequences interesting. More because of their abstractness, their ability to surprise you, the infinite possibilities you need to explore, etc, etc. Basically the aha! factor.

I found one today and was completely baffled. I would not say this is the best "puzzle" and so I am posting solution with the problem but still interesting as it is weird :)

Problem:
What comes next? 1, 11, 21, 1211, 111221….

Solution:
Highlight the part between the * symbols for the answer.
* It’s known as Morris Number Sequence. What happens basically is you count the number of times a number appears in the sequence and write in next. So first number is 1 read as one 1 leading to the next number 11, which in turn is two 1. Therefore the next number in sequence is 21. 21 is read as one 2 one 1 leading to the next number in sequence 1211 which is now read as one 1 one 2 two 1 i.e. 111221. Next number becomes 312211 followed by 13112221, 1113213211 & it continues. :) *

Comments

  1. was asked in an insti logic quiz sometime. anyway, when u post answers, pls make them rot13 :P or make it such tht u click on a link n the answer then appears...

    Reply Delete
  2. @ramdas.. the work is on.. will be done by christmas :)

    Reply Delete

Post a Comment

[フレーム]

Popular posts from this blog

Buying Dimsums

Source: Alok Goyal (Stellaris VP, Ex-Helion VC) puzzle blog Problem: A fast food restaurant sells dimsums in boxes of 7 and 3. What’s the greatest number of dimsums a person cannot buy. Generalize it for p and q where p and q are relatively prime. I loved the puzzle. Hope you enjoy it too.

Polya's Urn Problem

Puzzle: There are two urns with one ball each. Each of subsequent n-2 balls is placed into one of these urns, with probability proportional to the number of balls already in that urn. What is the expected number of balls in the smaller sized urn? Source: P. Winkler's Puzzles book. (Chapter: Probability). Solution: Highlight the part between the * symbols for the answer. * This problem can be reformulated as the following problem. Suppose I have a stack of black cards and one red card. Initially I take red card in my hand. Now I add black cards randomly between any two cards (so, initially its either above or below red). Note that the probability that I add the card above the red card, when x-1 is the number of cards above red and y-1 is the number of cards below red is x/(x+y). Let the problem be if red card is dividing the black cards into two sets, what is the expected number of black cards in the smaller section. So, we see that the two problems are equivalent. No...

(Advanced) Cheryl's Birthday Puzzle

Source: Sent to me by Prateek Chandra Jha (IIT Bombay) Problem: This problem is inspired by the Cheryl's Birthday Puzzle ( FB Post , Guardian Link ). Paul, Sam and Dean are assigned the task of figuring out two numbers. They get the following information: Both numbers are integers between (including) 1 and 1000 Both numbers may also be identical. Paul is told the product of the two numbers, Sam the sum and Dean the difference. After receiving their number, the following conversation takes place: Paul: I do not know the two numbers. Sam: You did not have to tell me that, I already knew that. Paul: Then I now know the two numbers. Sam: I also know them. Dean: I do not know the two numbers. I can only guess one which may probably be correct but I am not sure. Paul: I know which one you are assuming but it is incorrect. Dean: Ok, I also know the two numbers. What are the two numbers? Disclaimer: Its not a puzzle for 14-15 year olds like Cheryl's