Publication:

Uniqueness and Homogeneity of Ordered Relational Structures

Loading...

Date

1986

Authors

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier
The Harvard community has made this article openly available. Please share how this access benefits you.

Research Projects

Organizational Units

Journal Issue

Citation

Luce, R. Duncan. 1986. Uniqueness and homogeneity of ordered relational structures. Journal of Mathematical Psychology 30, no. 4: 391-415.

Research Data

Abstract

There are four major results in the paper. (1) In a general ordered relational structure that is order dense, Dedekind complete, and whose dilations (automorphisms with fixed points) are Archimedean, various consequences of finite uniqueness are developed (Theorem 2.6). (2) Replacing the Archimedean assumption by the assumption that there is a homogeneous subgroup of automorphisms that is Archimedean ordered is sufficient to show that the structure can be represented numberically as a generalized unit structure in the sense that the defining real relations satisfy the usual numerical property of homogeneity (Theorem 3.4). The last two results pertain just to idempotent concatenation structures. (3) In a closed, idempotent, solvable, and Dedekind complete concatenation structure, homogeneity is equivalent to the structure satisfying an inductive property analogous to the condition for homogeneity in a positive concatenation structure (Theorem 4.3). Finally, (4) an axiomatization is given for an idempotent structure to be of scale type (2, 2), which has previously been shown to be equivalent to a dual bilinear representation. Basically two operations are defined in terms of the given one, and the conditions are that each must be right autodistributive and together they satisfy a generalized bisymmetry property. The paper ends listing several unsolved problems.

Description

Other Available Sources

Keywords

Terms of Use

This article is made available under the terms and conditions applicable to Other Posted Material (LAA), as set forth at Terms of Service

Endorsement

Review

Supplemented By

Referenced By

Related Stories

AltStyle によって変換されたページ (->オリジナル) /