Hermite Polynomial
The Hermite polynomials H_n(x) are set of orthogonal polynomials over the domain (-infty,infty) with weighting function e^(-x^2), illustrated above for n=1, 2, 3, and 4. Hermite polynomials are implemented in the Wolfram Language as HermiteH [n, x].
The Hermite polynomial H_n(z) can be defined by the contour integral
where the contour encloses the origin and is traversed in a counterclockwise direction (Arfken 1985, p. 416).
The first few Hermite polynomials are
When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 2; -2, 4; -12, 8; 12, -48, 16; 120, -160, 32; ... (OEIS A059343).
The values H_n(0) may be called Hermite numbers.
The Hermite polynomials are a Sheffer sequence with
(Roman 1984, p. 30), giving the exponential generating function
Using a Taylor series shows that
Since partialf(x-t)/partialt=,
Now define operators
It follows that
so
| O^~_1=O^~_2, |
(27)
|
and
(Arfken 1985, p. 720), which means the following definitions are equivalent:
(Arfken 1985, pp. 712-713 and 720).
The Hermite polynomials may be written as
(Koekoek and Swarttouw 1998), where U(a,b,z) is a confluent hypergeometric function of the second kind, which can be simplified to
| H_n(z)=2^nU(-1/2n,1/2,z^2) |
(34)
|
in the right half-plane R[z]>0.
The Hermite polynomials are related to the derivative of erf by
They have a contour integral representation
They are orthogonal in the range (-infty,infty) with respect to the weighting function e^(-x^2)
The Hermite polynomials satisfy the symmetry condition
| H_n(-x)=(-1)^nH_n(x). |
(38)
|
They also obey the recurrence relations
| H_(n+1)(x)=2xH_n(x)-2nH_(n-1)(x) |
(39)
|
| H_n^'(x)=2nH_(n-1)(x). |
(40)
|
By solving the Hermite differential equation, the series
are obtained, where the products in the numerators are equal to
| (-4k)(-4k+4)...(-4k+4j-4)=4^j(-k)_j, |
(45)
|
with (x)_n the Pochhammer symbol.
Let a set of associated functions be defined by
then the u_n satisfy the orthogonality conditions
if alpha+beta+gamma=2s is even and s>=alpha, s>=beta, and s>=gamma. Otherwise, the last integral is 0 (Szegö 1975, p. 390). Another integral is
| int_(-infty)^inftyu_n(x)x^ru_m(x)dx={0 if r-n-m is odd; (r!)/((2a)^r)sqrt((2^(m+n))/(m!n!))sum_(p=max(0,-s))^(min(m,n))(n; p)(m; p)(p!)/(2^p(s+p)!) otherwise, |
(52)
|
where s=(r-n-m)/2 and (n; k) is a binomial coefficient (T. Drane, pers. comm., Feb. 14, 2006).
The polynomial discriminant is
(Szegö 1975, p. 143), a normalized form of the hyperfactorial, the first few values of which are 1, 32, 55296, 7247757312, 92771293593600000, ... (OEIS A054374). The table of resultants is given by {0}, {-8,0}, {0,-2048,0}, {192,16384,28311552,0}, ... (OEIS A054373).
Two interesting identities involving H_n(x+y) are given by
and
(G. Colomer, pers. comm.). A very pretty identity is
| H_n(x+y)=(H+2y)^n, |
(56)
|
where H^k=H_k(x) (T. Drane, pers. comm., Feb. 14, 2006).
They also obey the sum
as well as the more complicated
| H_n(x)=H_n+sum_(m=0)^(|_n/2_|)[sum_(k=1)^(n-2m)(-1)^kS(n-2m,k)(-x)_k]×((-1)^m2^(n-2m)n!)/((n-2m)!m!), |
(58)
|
where H_n=H_n(0) is a Hermite number, S(n,k) is a Stirling number of the second kind, and (x)_n is a Pochhammer symbol (T. Drane, pers. comm., Feb. 14, 2006).
A class of generalized Hermite polynomials gamma_n^m(x) satisfying
was studied by Subramanyan (1990). A class of related polynomials defined by
| [画像: h_(n,m)=gamma_n^m((2x)/m) ] |
(60)
|
and with generating function
was studied by Djordjević (1996). They satisfy
| H_n(x)=n!h_(n,2)(x). |
(62)
|
Roman (1984, pp. 87-93) defines a generalized Hermite polynomial H_n^((nu))(x) with variance nu.
A modified version of the Hermite polynomial is sometimes (but rarely) defined by
(Jörgensen 1916; Magnus and Oberhettinger 1948; Slater 1960, p. 99; Abramowitz and Stegun 1972, p. 778). The first few of these polynomials are given by
When ordered from smallest to largest powers, the triangle of nonzero coefficients is 1; 1; -1, 1; -3, 1; 3, -6, 1; 15, -10, 1; ... (OEIS A096713). The polynomial He_n(x) is the independence polynomial of the complete graph K_n.
See also
Hermite Number, Mehler's Hermite Polynomial Formula, Weber FunctionsRelated Wolfram sites
http://functions.wolfram.com/Polynomials/HermiteH/, http://functions.wolfram.com/HypergeometricFunctions/HermiteHGeneral/Explore with Wolfram|Alpha
References
Abramowitz, M. and Stegun, I. A. (Eds.). "Orthogonal Polynomials." Ch. 22 in Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, 9th printing. New York: Dover, pp. 771-802, 1972.Andrews, G. E.; Askey, R.; and Roy, R. "Hermite Polynomials." §6.1 in Special Functions. Cambridge, England: Cambridge University Press, pp. 278-282, 1999.Arfken, G. "Hermite Functions." §13.1 in Mathematical Methods for Physicists, 3rd ed. Orlando, FL: Academic Press, pp. 712-721, 1985.Chebyshev, P. L. "Sur le développement des fonctions à une seule variable." Bull. ph.-math., Acad. Imp. Sc. St. Pétersbourg 1, 193-200, 1859.Chebyshev, P. L. Oeuvres, Vol. 1. New York: Chelsea, pp. 49-508, 1987.Djordjević, G. "On Some Properties of Generalized Hermite Polynomials." Fib. Quart. 34, 2-6, 1996.Hermite, C. "Sur un nouveau développement en série de fonctions." Compt. Rend. Acad. Sci. Paris 58, 93-100 and 266-273, 1864. Reprinted in Hermite, C. Oeuvres complètes, tome 2. Paris, pp. 293-308, 1908.Hermite, C. Oeuvres complètes, tome 3. Paris: Hermann, p. 432, 1912.Iyanaga, S. and Kawada, Y. (Eds.). "Hermite Polynomials." Appendix A, Table 20.IV in Encyclopedic Dictionary of Mathematics. Cambridge, MA: MIT Press, pp. 1479-1480, 1980.Jeffreys, H. and Jeffreys, B. S. "The Parabolic Cylinder, Hermite, and Hh Functions" §23.08 in Methods of Mathematical Physics, 3rd ed. Cambridge, England: Cambridge University Press, pp. 620-622, 1988.Jörgensen, N. R. Undersögler over frekvensflader og korrelation. Copenhagen, Denmark: Busck, 1916.Koekoek, R. and Swarttouw, R. F. "Hermite." §1.13 in The Askey-Scheme of Hypergeometric Orthogonal Polynomials and its q-Analogue. Delft, Netherlands: Technische Universiteit Delft, Faculty of Technical Mathematics and Informatics Report 98-17, pp. 50-51, 1998.Magnus, W. and Oberhettinger, F. Ch. 5 in Formeln und Sätze für die speziellen Funktionen der mathematischen Physik, 2nd ed. Berlin: Springer-Verlag, 1948.Roman, S. "The Hermite Polynomials." §4.2.1 in The Umbral Calculus. New York: Academic Press, pp. 30 and 87-93, 1984.Rota, G.-C.; Kahaner, D.; Odlyzko, A. "Hermite Polynomials." §10 in "On the Foundations of Combinatorial Theory. VIII: Finite Operator Calculus." J. Math. Anal. Appl. 42, 684-760, 1973.Sansone, G. "Expansions in Laguerre and Hermite Series." Ch. 4 in Orthogonal Functions, rev. English ed. New York: Dover, pp. 295-385, 1991.Slater, L. J. Confluent Hypergeometric Functions. Cambridge, England: Cambridge University Press, 1960.Sloane, N. J. A. Sequences A054373, A054374, A059343, and A096713 in "The On-Line Encyclopedia of Integer Sequences."Spanier, J. and Oldham, K. B. "The Hermite Polynomials H_n(x)." Ch. 24 in An Atlas of Functions. Washington, DC: Hemisphere, pp. 217-223, 1987.Subramanyan, P. R. "Springs of the Hermite Polynomials." Fib. Quart. 28, 156-161, 1990.Szegö, G. Orthogonal Polynomials, 4th ed. Providence, RI: Amer. Math. Soc., 1975.Referenced on Wolfram|Alpha
Hermite PolynomialCite this as:
Weisstein, Eric W. "Hermite Polynomial." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/HermitePolynomial.html