Generating Function
A generating function f(x) is a formal power series
whose coefficients give the sequence {a_0,a_1,...}.
The Wolfram Language command GeneratingFunction [expr, n, x] gives the generating function in the variable x for the sequence whose nth term is expr. Given a sequence of terms, FindGeneratingFunction [{a1, a2, ...}, x] attempts to find a simple generating function in x whose nth coefficient is a_n.
Given a generating function, the analytic expression for the nth term in the corresponding series can be computing using SeriesCoefficient [expr, {x, x0, n}]. The generating function f(x) is sometimes said to "enumerate" a_n (Hardy 1999, p. 85).
Generating functions giving the first few powers of the nonnegative integers are given in the following table.
There are many beautiful generating functions for special functions in number theory. A few particularly nice examples are
for the partition function P, where (q)_infty is a q-Pochhammer symbol, and
for the Fibonacci numbers F_n.
Generating functions are very useful in combinatorial enumeration problems. For example, the subset sum problem, which asks the number of ways c_(m,s) to select m out of M given integers such that their sum equals s, can be solved using generating functions.
The generating function of G(t) of a sequence of numbers f(n) is given by the Z-transform of f(n) in the variable 1/t (Germundsson 2000).
See also
Cumulant-Generating Function, Enumerate, Exponential Generating Function, Formal Power Series, Moment-Generating Function, Recurrence Relation, Subset Sum Problem, Z-Transform Explore this topic in the MathWorld classroomExplore with Wolfram|Alpha
More things to try:
References
Bender, E. A. and Goldman, J. R. "Enumerative Uses of Generating Functions." Indiana U. Math. J. 20, 753-765, 1970/1971.Bergeron, F.; Labelle, G.; and Leroux, P. "Théorie des espèces er Combinatoire des Structures Arborescentes." Publications du LACIM. Québec, Montréal, Canada: Univ. Québec Montréal, 1994.Cameron, P. J. "Some Sequences of Integers." Disc. Math. 75, 89-102, 1989.Doubilet, P.; Rota, G.-C.; and Stanley, R. P. "The Idea of Generating Function." Ch. 3 in Finite Operator Calculus (Ed. G.-C. Rota). New York: Academic Press, pp. 83-134, 1975.Germundsson, R. "Mathematica Version 4." Mathematica J. 7, 497-524, 2000.Graham, R. L.; Knuth, D. E.; and Patashnik, O. Concrete Mathematics: A Foundation for Computer Science, 2nd ed. Reading, MA: Addison-Wesley, 1994.Harary, F. and Palmer, E. M. Graphical Enumeration. New York: Academic Press, 1973.Hardy, G. H. Ramanujan: Twelve Lectures on Subjects Suggested by His Life and Work, 3rd ed. New York: Chelsea, p. 85, 1999.Lamdo, S. K. Lectures on Generating Functions. Providence, RI: Amer. Math. Soc., 2003.Leroux, P. and Miloudi, B. "Généralisations de la formule d'Otter." Ann. Sci. Math. Québec 16, 53-80, 1992.Riordan, J. Combinatorial Identities. New York: Wiley, 1979.Riordan, J. An Introduction to Combinatorial Analysis. New York: Wiley, 1980.Rosen, K. H. Discrete Mathematics and Its Applications, 4th ed. New York: McGraw-Hill, 1998.Sloane, N. J. A. and Plouffe, S. "Recurrences and Generating Functions." §2.4 in The Encyclopedia of Integer Sequences. San Diego, CA: Academic Press, pp. 9-10, 1995.Stanley, R. P. Enumerative Combinatorics, Vol. 1. Cambridge, England: Cambridge University Press, p. 63, 1996.Viennot, G. "Une Théorie Combinatoire des Polynômes Orthogonaux Généraux." Publications du LACIM. Québec, Montréal, Canada: Univ. Québec Montréal, 1983.Wilf, H. S. Generatingfunctionology, 2nd ed. New York: Academic Press, 1994.Referenced on Wolfram|Alpha
Generating FunctionCite this as:
Weisstein, Eric W. "Generating Function." From MathWorld--A Wolfram Resource. https://mathworld.wolfram.com/GeneratingFunction.html