KJACR
Korean Journal of
Air-Conditioning and Refrigeration Engineering
SAREK
Contact
ISSN : 1229-6422 (Print)
ISSN : 2465-7611 (Online)
http://journal.auric.kr/kjacr
Mobile QR Code
QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering
ISO Journal Title
Korean J. Air-Cond. Refrig. Eng.
Open Access, Monthly
Open Access
Monthly
ISSN : 1229-6422 (Print)
ISSN : 2465-7611 (Online)
Online Submission
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
목적 및 범위
Aims and Scope
편집위원회
Editorial Board
윤리규정
Research &
Publication Ethics
논문투고안내
Instructions to Authors
BM
(Business Model)
연락처
Contact Info
논문투고
Online-Submission
KOFST :: The Korean Federation of Science and Technology Societies
Journal Search
Home
Archive
2023-07
(Vol.35 No.07)
10.6110/KJACR.2023357.343
Journal XML
XML
INFO
REF
References
1
de Keizer, A. C., Vajen, K., and Jordan, U., 2011, Review of Long-term Fault Detection Approaches in Solar Thermal Systems, Solar Energy, Vol. 85, pp. 1430-1439.
DOI
2
de Keizer, C., Kuethe, S., Jordan, U., and Vajen, K., 2013, Simulation-based long-term Fault Detection for Solar Thermal Systems, Solar Energy, Vol. 93, pp. 109-120.
DOI
3
Faure, G., Vallée, M., Paulus, C., and Tran, T. Q., 2020, Fault Detection and Diagnosis for Large Solar Thermal Systems: A Review of Fault Types and Applicable Methods, Solar Energy, Vol. 197, pp. 472-484.
DOI
4
Feierl, L., Unterberger, V., Rossi, C., Gerardts, B., and Gaetani, M., 2023, Fault Detective: Automatic Fault-detection for Solar Thermal Systems Based on Artificial Intelligence, Solar Energy Advances, Vol. 3. No. 2023, p. 100033.
DOI
5
International Standard Organization, 2022, ISO 24194:2022 (Solar energy-Collector fields-Check of performance).
URL
6
Farkas, I. and Géczy-Vı́g, P., 2003, Neural Network Modelling of Flat-plate Solar Collectors, Computers and Electronics in Agriculture, Vol. 40, pp. 87-102.
DOI
7
Sözen, A., Menlik, T., and Ünvar, S., 2008, Determination of Efficiency of Flat-plate Solar Collectors Using Neural Network Approach, Expert Systems with Applications, Vol. 35, pp. 1533-1539.
DOI
8
Vafaei, L. E. and Sah, M., 2017, Predicting Efficiency of Flat-plate Solar Collector Using a Fuzzy Inference System, Procedia Computer Science, Vol. 120, pp. 221-228.
DOI
9
Sridharan, M. and Shenbagaraj, S., 2021, Application of Generalized Regression Neural Network in Predicting the Thermal Performance of Solar Flat Plate Collector Systems, ASME Journal of Thermal Science and Engineering Applications, Vol. 13, No. 2.
DOI
10
Weiss, W. and Spörk-Dür, M., 2022, Solar Heat Worldwide-Global Market Developments and Trends in 2021; AEE Intec; IEA SHC: Gleisdorf, Austria.
URL
11
Erbs, D. G., Klein, S. A., and Duffie, J. A., 1982, Estimation of the Diffuse Radiation Fraction for Hourly, Daily, and Monthly-average Global Radiation, Solar Energy, Vol. 28, pp. 293-302.
DOI
12
Reindl, D. T., Beckman, W. A., and Duffie, J. A., 1990, Evaluation of Hourly Tilted Surface Radiation Models, Solar Energy, Vol. 45, pp. 9-17.
DOI
13
Brandemuehl, M. J. and Beckman, W. A., 1980, Transmission of Diffuse Radiation Through CPC and Flat-plate Collector Glazings, Solar Energy, Vol. 24, pp. 511-513.
DOI
14
Engineering ToolBox: https://www.engineeringtoolbox.com.
URL
15
openHAB: https://www.openhab.org/docs/.
URL
AltStyle
によって変換されたページ
(->オリジナル)
/
アドレス:
モード:
デフォルト
音声ブラウザ
ルビ付き
配色反転
文字拡大
モバイル