Mobile QR Code QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering

Journal Search

  1. Home
  2. Archive
  3. 2020-08 (Vol.32 No.8)
  4. 10.6110/KJACR.2020328.386

Journal XML


References

1
2017, Short-Term Prediction of Electric Demand in Building Sector Via Hybrid Support Vector Regression, Applied Energy, Vol. 204, pp. 1363-1374DOI
2
Spiliots K., Gutierrez A. I. R., Belmans R., 2016, Demand Flexibility Versus Physical Network Expansions in Distribution Girds, Applied Energy, Vol. 182, pp. 613-624DOI
3
UNEP , Cities and Climate Change, <http://www.unep.org/resourceefficiency/Plicy.ResourceEfficienctCities/FocusAreas/ CitiesandClimateChange/tabid/101665/Default.aspx>Google Search
4
Perez-Lombard L., Ortiz J., Pout C., 2008, A Review on Building Energy Consumption Information, Energy and Buildings, Vol. 40, No. 3, pp. 394-398DOI
5
Huang W. Z., Zaheeruddin M., Cho S. H., 2006, Dynamic Simulation of Energy Management Control Functions for HVAC Systems in Buildings, Energy Conversion and Management, Vol. 47, No. 7-8, pp. 926-943DOI
6
Xiao F. Fan C., 2014, Data Mining in Building Automation System for Improving Building Operational Performance, Energy Build, Vol. 75, No. 11, pp. 109-118DOI
7
Ribeiro M., Grolinger K., ElYamany H. F., Higashino W. A., Capretz Miriam A. M., 2018, Transfer Learning with Seasonal and Trend Adjustment for Cross-Building Energy Forecasting, Energy & Buildings, Vol. 165, pp. 352-363DOI
8
Ahn Y. S., Hong G. P., Kim B. S., 2020, Predicting Supply Air Temperature in Air Handling Unit Using Machine Learning-Based Automation Algorithm, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 32, No. 1, pp. 37-45Google Search
9
Ahn Y. S., Kim H. J., Lee S. K., Kim B. S., 2019, Prediction of Heating Energy Consumption Using Machine Learning and Parameters in Combined Heat and Power Generation, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 31, No. 8, pp. 37-45Google Search
10
Fan C., Sun Y., Xiao F., Ma J., Lee D., Wang J., Tseng Y. C., 2020, Statical Investigations of Transfer Learning-Based Methodology for Short-Term Building Energy Predictions, Applied Energy, Vol. 262, pp. 114499DOI
11
Lu Y., Tian Z., Peng P., Niu J., Li W., Zhang H., 2019, GMM Clustering for Heating Load Patterns in-Depth Identification and Prediction Model Accuracy Improvement of District Heating System, Energy & Buildings, Vol. 190, pp. 49-60DOI
12
Jeon , 2019, Short-Term Electricity Consumption Prediction based on Occupancy Information Using Deep- Learning Network Model, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 31, No. 1, pp. 22-31Google Search
13
Woo , 2016, A study on Classifying Building Energy Consumption Pattern Using Actual Building Energy Data, Journal of the Architectural Institute of Korea Planning and Design, Vol. 32, No. 5, pp. 143-151DOI
14
Taylor S. J., Letham B., 2018, Forecasting at Scale, PeerJPreprints, pp. 1-25DOI
15
Do H. Cetin K. S., 2018, Evaluation of the Causes and Impact of Outliers on Residential Building Energy Use Prediction Using Inverse Modeling, Building Environmental, Vol. 138, pp. 194-206DOI
16
Guo , 2018, Machine Learning-Based Theraml Response Time Ahead Energy Demand Prediction For Building Heating Systems, Applied Energy, Vol. 221, pp. 16-27DOI
17
Bourdeau , 2019, Modeling and Forecasting Building Energy Consumption : A Review of Data-Driven Techniques, Sustainable Cities and Society, Vol. 48, pp. 101533DOI
18
Hochreiter S. Schmidhuber J., 1997, Long Short-Term Memory, Neural Computation, Vol. 9, No. 8, pp. 1735-1780DOI
19
Somu N., MR G. R., Ramamritham K., 2020, A Hybrid Model for Building Energy Consumption Forecasting Using Long Short Term Memory Networks, Applied Energy, Vol. 261, pp. 114131DOI
20
Pedregosa , 2011, Scikit-learn : Machine learning in Python, Journal of Machine Learning Research, Vol. 12, pp. 2825-2830Google Search
21
ASHRAE GUIDELINE 14-2002 , , Measurement of Energy and Demand SavingsGoogle Search

AltStyle によって変換されたページ (->オリジナル) /