KJACR
Korean Journal of
Air-Conditioning and Refrigeration Engineering
SAREK
Contact
ISSN : 1229-6422 (Print)
ISSN : 2465-7611 (Online)
http://journal.auric.kr/kjacr
Mobile QR Code
QR CODE : Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering
Korean Journal of Air-Conditioning and Refrigeration Engineering
ISO Journal Title
Korean J. Air-Cond. Refrig. Eng.
Open Access, Monthly
Open Access
Monthly
ISSN : 1229-6422 (Print)
ISSN : 2465-7611 (Online)
Online Submission
Main Menu
Main Menu
최근호
Current Issue
저널소개
About Journal
논문집
Journal Archive
목적 및 범위
Aims and Scope
편집위원회
Editorial Board
윤리규정
Research &
Publication Ethics
논문투고안내
Instructions to Authors
BM
(Business Model)
연락처
Contact Info
논문투고
Online-Submission
KOFST :: The Korean Federation of Science and Technology Societies
Journal Search
Home
Archive
2020-08
(Vol.32 No.8)
10.6110/KJACR.2020328.386
Journal XML
XML
INFO
REF
References
1
2017, Short-Term Prediction of Electric Demand in Building Sector Via Hybrid Support Vector Regression, Applied Energy, Vol. 204, pp. 1363-1374
DOI
2
Spiliots K., Gutierrez A. I. R., Belmans R., 2016, Demand Flexibility Versus Physical Network Expansions in Distribution Girds, Applied Energy, Vol. 182, pp. 613-624
DOI
3
UNEP , Cities and Climate Change, <http://www.unep.org/resourceefficiency/Plicy.ResourceEfficienctCities/FocusAreas/ CitiesandClimateChange/tabid/101665/Default.aspx>
Google Search
4
Perez-Lombard L., Ortiz J., Pout C., 2008, A Review on Building Energy Consumption Information, Energy and Buildings, Vol. 40, No. 3, pp. 394-398
DOI
5
Huang W. Z., Zaheeruddin M., Cho S. H., 2006, Dynamic Simulation of Energy Management Control Functions for HVAC Systems in Buildings, Energy Conversion and Management, Vol. 47, No. 7-8, pp. 926-943
DOI
6
Xiao F. Fan C., 2014, Data Mining in Building Automation System for Improving Building Operational Performance, Energy Build, Vol. 75, No. 11, pp. 109-118
DOI
7
Ribeiro M., Grolinger K., ElYamany H. F., Higashino W. A., Capretz Miriam A. M., 2018, Transfer Learning with Seasonal and Trend Adjustment for Cross-Building Energy Forecasting, Energy & Buildings, Vol. 165, pp. 352-363
DOI
8
Ahn Y. S., Hong G. P., Kim B. S., 2020, Predicting Supply Air Temperature in Air Handling Unit Using Machine Learning-Based Automation Algorithm, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 32, No. 1, pp. 37-45
Google Search
9
Ahn Y. S., Kim H. J., Lee S. K., Kim B. S., 2019, Prediction of Heating Energy Consumption Using Machine Learning and Parameters in Combined Heat and Power Generation, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 31, No. 8, pp. 37-45
Google Search
10
Fan C., Sun Y., Xiao F., Ma J., Lee D., Wang J., Tseng Y. C., 2020, Statical Investigations of Transfer Learning-Based Methodology for Short-Term Building Energy Predictions, Applied Energy, Vol. 262, pp. 114499
DOI
11
Lu Y., Tian Z., Peng P., Niu J., Li W., Zhang H., 2019, GMM Clustering for Heating Load Patterns in-Depth Identification and Prediction Model Accuracy Improvement of District Heating System, Energy & Buildings, Vol. 190, pp. 49-60
DOI
12
Jeon , 2019, Short-Term Electricity Consumption Prediction based on Occupancy Information Using Deep- Learning Network Model, Korean Journal of Air-Conditioning and Refrigeration Engineering, Vol. 31, No. 1, pp. 22-31
Google Search
13
Woo , 2016, A study on Classifying Building Energy Consumption Pattern Using Actual Building Energy Data, Journal of the Architectural Institute of Korea Planning and Design, Vol. 32, No. 5, pp. 143-151
DOI
14
Taylor S. J., Letham B., 2018, Forecasting at Scale, PeerJPreprints, pp. 1-25
DOI
15
Do H. Cetin K. S., 2018, Evaluation of the Causes and Impact of Outliers on Residential Building Energy Use Prediction Using Inverse Modeling, Building Environmental, Vol. 138, pp. 194-206
DOI
16
Guo , 2018, Machine Learning-Based Theraml Response Time Ahead Energy Demand Prediction For Building Heating Systems, Applied Energy, Vol. 221, pp. 16-27
DOI
17
Bourdeau , 2019, Modeling and Forecasting Building Energy Consumption : A Review of Data-Driven Techniques, Sustainable Cities and Society, Vol. 48, pp. 101533
DOI
18
Hochreiter S. Schmidhuber J., 1997, Long Short-Term Memory, Neural Computation, Vol. 9, No. 8, pp. 1735-1780
DOI
19
Somu N., MR G. R., Ramamritham K., 2020, A Hybrid Model for Building Energy Consumption Forecasting Using Long Short Term Memory Networks, Applied Energy, Vol. 261, pp. 114131
DOI
20
Pedregosa , 2011, Scikit-learn : Machine learning in Python, Journal of Machine Learning Research, Vol. 12, pp. 2825-2830
Google Search
21
ASHRAE GUIDELINE 14-2002 , , Measurement of Energy and Demand Savings
Google Search
AltStyle
によって変換されたページ
(->オリジナル)
/
アドレス:
モード:
デフォルト
音声ブラウザ
ルビ付き
配色反転
文字拡大
モバイル