std::layout_stride::mapping<Extents>::mapping-traits
From cppreference.com
 
 
 < cpp | container | mdspan | layout stride | mapping 
 
 
 C++ 
 Feature test macros (C++20)
 Concepts library (C++20)
 Metaprogramming library (C++11)
 Ranges library (C++20)
 Filesystem library (C++17)
 Concurrency support library (C++11)
 Execution control library (C++26)
Containers library 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(C++17)
(C++11)
(C++26)
(C++26)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++23)
(C++23)
(C++23)
(C++23)
(C++20)
(C++23)
 Tables
std::mdspan 
 
 
 
 
 
 
 
 
 
 
 
 
(C++26)
(C++26)
(C++26)
(C++26)
(C++26)
(C++26)
(C++26)
(C++26)
(C++26)
std::layout_stride::mapping 
 
mapping::is_uniquemapping::is_exhaustivemapping::is_stridedmapping::is_always_uniquemapping::is_always_exhaustivemapping::is_always_strided
static constexpr bool is_unique() noexcept;
 (1) 
 (since C++23) 
constexpr bool is_exhaustive() const noexcept;
 (2) 
 (since C++23) 
static constexpr bool is_strided() noexcept;
 (3) 
 (since C++23) 
static constexpr bool is_always_unique() noexcept;
 (4) 
 (since C++23) 
static constexpr bool is_always_exhaustive() noexcept;
 (5) 
 (since C++23) 
static constexpr bool is_always_strided() noexcept;
 (6) 
 (since C++23) 
Every instance of every specialization of mapping is unique and strided.
The mapping is exhaustive if one of the following conditions is true:
- rank_ is 0, or
-  there exists a permutation p of the integers in the range [0,rank_)such that:
- stride(p[0]) equals 1 and
- stride(p[i]) equals stride(p[i - 1]) * extents().extent(p[i - 1])
 
- for all i in [1,rank_), where p[i] is the ith element of p.
(rank_ is an exposition-only static member constant defined in std::layout_stride::mapping.)
See LayoutMapping for the semantics of these predicate mapping traits.
Contents
[edit] Parameters
(none)
[edit] Return value
1,3-4,6) true
2) true if the mapping is exhaustive (see above)
5) false
[edit] Example
 This section is incomplete
Reason: no example
Reason: no example
[edit] See also
 This section is incomplete