std::ranges::reverse_copy, std::ranges::reverse_copy_result
From cppreference.com
 
 
 
 
 
 C++ 
 Feature test macros (C++20)
 Concepts library (C++20)
 Metaprogramming library (C++11)
 Ranges library (C++20)
 Filesystem library (C++17)
 Concurrency support library (C++11)
 Execution control library (C++26)
Algorithm library 
 
 
 
 
 
 
 
  
 
  
 
 
 
  
 
 
 
 
 
 
 
  
  
  
 
  
 
  
 
  
 
  
 
 
 
 Constrained algorithms, e.g. ranges::copy, ranges::sort, ...
(C++17)  
(C++17)    (C++17)(C++17)(C++20)
(C++17)
(C++11)
(until C++17)(C++11)
(C++20)(C++20)
(C++17)
(C++17)
(C++17)
(C++17)
Constrained algorithms 
All names in this menu belong to namespace 
 
    
 
     
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
std::ranges
(C++23)
(C++23)
  (C++23)
(C++23)
  (C++23)
(C++23)
(C++23)
            Defined in header 
 
 
<algorithm> 
 Call signature
 
 
template< std::bidirectional_iterator I, std::sentinel_for <I> S,
 (1) 
 (since C++20) 
          std::weakly_incrementable O >
requires std::indirectly_copyable <I, O>
constexpr reverse_copy_result<I, O>
template< ranges::bidirectional_range R, std::weakly_incrementable O >
 (2) 
 (since C++20) 
requires std::indirectly_copyable <ranges::iterator_t <R>, O>
constexpr reverse_copy_result<ranges::borrowed_iterator_t <R>, O>
Helper types
 
 
template< class I, class O >
using reverse_copy_result = ranges::in_out_result <I, O>;
 (3) 
 (since C++20) 
using reverse_copy_result = ranges::in_out_result <I, O>;
1) Copies the elements from the source range 
[first, last) to the destination range [result, result + N), where N is ranges::distance (first, last), in such a way that the elements in the new range are in reverse order. Behaves as if by executing the assignment *(result + N - 1 - i) = *(first + i) once for each integer i in [0, N). The behavior is undefined if the source and destination ranges overlap.2) Same as (1), but uses r as the source range, as if using ranges::begin (r) as first and ranges::end (r) as last.
The function-like entities described on this page are algorithm function objects (informally known as niebloids), that is:
- Explicit template argument lists cannot be specified when calling any of them.
- None of them are visible to argument-dependent lookup.
- When any of them are found by normal unqualified lookup as the name to the left of the function-call operator, argument-dependent lookup is inhibited.
Contents
[edit] Parameters
 first, last
 -
 the iterator-sentinel pair defining the source range of elements to copy
 r
 -
 the source range of elements to copy
 result
 -
 the beginning of the destination range.
[edit] Return value
{last, result + N}.
[edit] Complexity
Exactly N assignments.
[edit] Notes
Implementations (e.g. MSVC STL) may enable vectorization when the both iterator types model contiguous_iterator and have the same value type, and the value type is TriviallyCopyable.
[edit] Possible implementation
See also the implementations in MSVC STL and libstdc++.
struct reverse_copy_fn { template<std::bidirectional_iterator I, std::sentinel_for <I> S, std::weakly_incrementable O> requires std::indirectly_copyable <I, O> constexpr ranges::reverse_copy_result<I, O> operator()(I first, S last, O result) const { auto ret = ranges::next (first, last); for (; last != first; *result = *--last, ++result); return {std::move(ret), std::move(result)}; } template<ranges::bidirectional_range R, std::weakly_incrementable O> requires std::indirectly_copyable <ranges::iterator_t <R>, O> constexpr ranges::reverse_copy_result<ranges::borrowed_iterator_t <R>, O> operator()(R&& r, O result) const { return (*this)(ranges::begin (r), ranges::end (r), std::move(result)); } }; inline constexpr reverse_copy_fn reverse_copy {};
[edit] Example
Run this code
#include <algorithm> #include <iostream> #include <string> int main() { std::string x {"12345"}, y(x.size(), ' '); std::cout << x << " → "; std::ranges::reverse_copy(x.begin(), x.end(), y.begin()); std::cout << y << " → "; std::ranges::reverse_copy(y, x.begin()); std::cout << x << '\n'; }
Output:
12345 → 54321 → 12345