std::extreme_value_distribution
From cppreference.com
 
 
 
 
 
 C++ 
 Feature test macros (C++20)
 Concepts library (C++20)
 Metaprogramming library (C++11)
 Ranges library (C++20)
 Filesystem library (C++17)
 Concurrency support library (C++11)
 Execution control library (C++26)
Numerics library 
  
 
 
 
 
 
 
 Mathematical special functions (C++17)
 Mathematical constants (C++20)
 Basic linear algebra algorithms (C++26)
 Data-parallel types (SIMD) (C++26)
 Floating-point environment (C++11)
 Bit manipulation (C++20)
 Saturation arithmetic (C++26)
(C++17)
(C++17)
(C++17)
(C++17)
(C++17)
(C++17)
Pseudo-random number generation 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
(C++20)
(C++11)
(C++11)
(C++11)
(C++26)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++26)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
extreme_value_distribution
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
(C++11)
std::extreme_value_distribution
 
 
 Member functions
 Generation
 Characteristics
 Non-member functions
(C++11)(C++11)(until C++20)
(C++11)(C++11)
Defined in header 
 
 
<random> 
 template< class RealType = double >
class extreme_value_distribution;
 
 (since C++11) 
class extreme_value_distribution;
Produces random numbers according to the Generalized extreme value distribution (it is also known as Gumbel Type I, log-Weibull, Fisher-Tippett Type I):
- \({\small p(x;a,b) = \frac{1}{b} \exp{(\frac{a-x}{b}-\exp{(\frac{a-x}{b})})} }\)p(x;a,b) = 1bexp⎛
 ⎜
 ⎝a-xb- exp⎛
 ⎜
 ⎝a-xb⎞
 ⎟
 ⎠⎞
 ⎟
 ⎠
std::extreme_value_distribution satisfies all requirements of RandomNumberDistribution.
Contents
[edit] Template parameters
 RealType
 -
 The result type generated by the generator. The effect is undefined if this is not one of float, double, or long double.
[edit] Member types
 Member type
 Definition
result_type (C++11)
 RealType
[edit] Member functions
Generation
Characteristics
[edit] Non-member functions
(C++11)
(function template) [edit]
[edit] Example
Run this code
#include <algorithm> #include <cmath> #include <iomanip> #include <iostream> #include <map> #include <random> #include <vector> template<int Height = 5, int BarWidth = 1, int Padding = 1, int Offset = 0, class Seq> void draw_vbars(Seq&& s, const bool DrawMinMax = true) { static_assert(0 < Height and 0 < BarWidth and 0 <= Padding and 0 <= Offset); auto cout_n = [](auto&& v, int n = 1) { while (n-- > 0) std::cout << v; }; const auto [min, max] = std::minmax_element (std::cbegin (s), std::cend (s)); std::vector <std::div_t > qr; for (typedef decltype(*std::cbegin (s)) V; V e : s) qr.push_back(std::div (std::lerp (V(0), 8 * Height, (e - *min) / (*max - *min)), 8)); for (auto h{Height}; h-- > 0; cout_n('\n')) { cout_n(' ', Offset); for (auto dv : qr) { const auto q{dv.quot}, r{dv.rem}; unsigned char d[]{0xe2, 0x96, 0x88, 0}; // Full Block: '█' q < h ? d[0] = ' ', d[1] = 0 : q == h ? d[2] -= (7 - r) : 0; cout_n(d, BarWidth), cout_n(' ', Padding); } if (DrawMinMax && Height > 1) Height - 1 == h ? std::cout << "┬ " << *max: h ? std::cout << "│ " : std::cout << "┴ " << *min; } } int main() { std::random_device rd{}; std::mt19937 gen{rd()}; std::extreme_value_distribution<> d{-1.618f, 1.618f}; const int norm = 10'000; const float cutoff = 0.000'3f; std::map <int, int> hist{}; for (int n = 0; n != norm; ++n) ++hist[std::round (d(gen))]; std::vector <float> bars; std::vector <int> indices; for (const auto& [n, p] : hist) if (const float x = p * (1.0f / norm); x > cutoff) { bars.push_back(x); indices.push_back(n); } draw_vbars<8,4>(bars); for (int n : indices) std::cout << ' ' << std::setw (2) << n << " "; std::cout << '\n'; }
Possible output:
████ ▅▅▅▅ ┬ 0.2186 ████ ████ │ ▁▁▁▁ ████ ████ ▇▇▇▇ │ ████ ████ ████ ████ │ ████ ████ ████ ████ ▆▆▆▆ │ ████ ████ ████ ████ ████ ▁▁▁▁ │ ▄▄▄▄ ████ ████ ████ ████ ████ ████ ▃▃▃▃ │ ▁▁▁▁ ████ ████ ████ ████ ████ ████ ████ ████ ▆▆▆▆ ▃▃▃▃ ▂▂▂▂ ▁▁▁▁ ▁▁▁▁ ▁▁▁▁ ▁▁▁▁ ┴ 0.0005 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7 8 9 10
[edit] External links
 Weisstein, Eric W. "Extreme Value Distribution." From MathWorld — A Wolfram Web Resource.