std::acos(std::complex)
From cppreference.com
 
 
 
 
 
 C++ 
 Feature test macros (C++20)
 Concepts library (C++20)
 Metaprogramming library (C++11)
 Ranges library (C++20)
 Filesystem library (C++17)
 Concurrency support library (C++11)
 Execution control library (C++26)
Numerics library 
  
 
 
 
 
 
 
 Mathematical special functions (C++17)
 Mathematical constants (C++20)
 Basic linear algebra algorithms (C++26)
 Data-parallel types (SIMD) (C++26)
 Floating-point environment (C++11)
 Bit manipulation (C++20)
 Saturation arithmetic (C++26)
(C++17)
(C++17)
(C++17)
(C++17)
(C++17)
(C++17)
std::complex 
  
 
 
 
 
 
 
(until C++20)  
(C++26)
  (C++26)
(C++26)
Defined in header 
 
 
<complex> 
 template< class T > 
complex<T> acos( const complex<T>& z );
 
 (since C++11) 
complex<T> acos( const complex<T>& z );
Computes complex arc cosine of a complex value z. Branch cuts exist outside the interval [−1, +1] along the real axis.
Contents
[edit] Parameters
 z
 -
 complex value
[edit] Return value
If no errors occur, complex arc cosine of z is returned, in the range of a strip unbounded along the imaginary axis and in the interval [0, +π] along the real axis.
[edit] Error handling and special values
Errors are reported consistent with math_errhandling .
If the implementation supports IEEE floating-point arithmetic,
- std::acos (std::conj (z)) == std::conj (std::acos (z))
-  If z is (±0,+0), the result is(π/2,-0)
-  If z is (±0,NaN), the result is(π/2,NaN)
-  If z is (x,+∞)(for any finite x), the result is(π/2,-∞)
-  If z is (x,NaN)(for any nonzero finite x), the result is(NaN,NaN)and FE_INVALID may be raised.
-  If z is (-∞,y)(for any positive finite y), the result is(π,-∞)
-  If z is (+∞,y)(for any positive finite y), the result is(+0,-∞)
-  If z is (-∞,+∞), the result is(3π/4,-∞)
-  If z is (+∞,+∞), the result is(π/4,-∞)
-  If z is (±∞,NaN), the result is(NaN,±∞)(the sign of the imaginary part is unspecified)
-  If z is (NaN,y)(for any finite y), the result is(NaN,NaN)and FE_INVALID may be raised
-  If z is (NaN,+∞), the result is(NaN,-∞)
-  If z is (NaN,NaN), the result is(NaN,NaN)
[edit] Notes
Inverse cosine (or arc cosine) is a multivalued function and requires a branch cut on the complex plane. The branch cut is conventionally placed at the line segments (-∞,-1) and (1,∞) of the real axis.
The mathematical definition of the principal value of arc cosine is acos z = 1
 2
π + iln(iz + √1-z2).
For any z, acos(z) = π - acos(-z).
[edit] Example
Run this code
#include <cmath> #include <complex> #include <iostream> int main() { std::cout << std::fixed ; std::complex <double> z1(-2.0, 0.0); std::cout << "acos" << z1 << " = " << std::acos (z1) << '\n'; std::complex <double> z2(-2.0, -0.0); std::cout << "acos" << z2 << " (the other side of the cut) = " << std::acos (z2) << '\n'; // for any z, acos(z) = pi - acos(-z) const double pi = std::acos (-1); std::complex <double> z3 = pi - std::acos (z2); std::cout << "cos(pi - acos" << z2 << ") = " << std::cos (z3) << '\n'; }
Output:
acos(-2.000000,0.000000) = (3.141593,-1.316958) acos(-2.000000,-0.000000) (the other side of the cut) = (3.141593,1.316958) cos(pi - acos(-2.000000,-0.000000)) = (2.000000,0.000000)
[edit] See also
(C++11)
(function template) [edit]
(C++11)
(function template) [edit]
C documentation  for cacos